State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
ACS Nano. 2024 May 28;18(21):13755-13767. doi: 10.1021/acsnano.4c01969. Epub 2024 May 16.
The ability to manipulate the self-assembly of proteins is essential to understanding the mechanisms of life and beneficial to fabricating advanced nanomaterials. Here, we report the transformation of the MS2 phage capsid from nanocages to nanotubes and then to nanotube hydrogels through simple point mutations guided by interfacial interaction redesign. We demonstrate that site 70, which lies in the flexible FG loop of the capsid protein (CP), is a "magic" site that can largely dictate the final morphology of assemblies. By varying the amino acid at site 70, with the aid of a cysteine-to-alanine mutation at site 46, we achieved the assembly of double-helical or single-helical nanotubes in addition to nanocages. Furthermore, an additional cysteine substitution on the surface of nanotubes mediated their cross-linking to form hydrogels with reducing agent responsiveness. The hierarchical self-assembly system allowed for the investigation of morphology-related immunogenicity of MS2 CPs, which revealed dramatic differences among nanocages, nanotubes, and nanotube hydrogels in terms of immune response types, antibody levels and T cell functions. This study provides insights into the assembly manipulation of protein nanomaterials and the customized design of nanovaccines and drug delivery systems.
操纵蛋白质自组装的能力对于理解生命的机制至关重要,并且有益于制造先进的纳米材料。在这里,我们通过界面相互作用的重新设计,报告了通过简单的点突变将 MS2 噬菌体衣壳从纳米笼转变为纳米管,然后转变为纳米管水凝胶。我们证明位于衣壳蛋白 (CP) 柔性 FG 环中的位置 70 是一个“神奇”的位置,可以在很大程度上决定组装的最终形态。通过改变位置 70 处的氨基酸,借助位置 46 处的半胱氨酸到丙氨酸突变,我们实现了除了纳米笼之外的双螺旋或单螺旋纳米管的组装。此外,纳米管表面的另一个半胱氨酸取代介导了它们的交联,形成了具有还原剂响应性的水凝胶。这种分层自组装系统允许研究 MS2 CP 与形态相关的免疫原性,这表明在免疫反应类型、抗体水平和 T 细胞功能方面,纳米笼、纳米管和纳米管水凝胶之间存在显著差异。这项研究为蛋白质纳米材料的组装操纵以及纳米疫苗和药物输送系统的定制设计提供了新的见解。