Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720-1460, USA.
Nat Commun. 2018 Apr 11;9(1):1385. doi: 10.1038/s41467-018-03783-y.
Self-assembling proteins are critical to biological systems and industrial technologies, but predicting how mutations affect self-assembly remains a significant challenge. Here, we report a technique, termed SyMAPS (Systematic Mutation and Assembled Particle Selection), that can be used to characterize the assembly competency of all single amino acid variants of a self-assembling viral structural protein. SyMAPS studies on the MS2 bacteriophage coat protein revealed a high-resolution fitness landscape that challenges some conventional assumptions of protein engineering. An additional round of selection identified a previously unknown variant (CP[T71H]) that is stable at neutral pH but less tolerant to acidic conditions than the wild-type coat protein. The capsids formed by this variant could be more amenable to disassembly in late endosomes or early lysosomes-a feature that is advantageous for delivery applications. In addition to providing a mutability blueprint for virus-like particles, SyMAPS can be readily applied to other self-assembling proteins.
自组装蛋白质对于生物系统和工业技术至关重要,但预测突变如何影响自组装仍然是一个重大挑战。在这里,我们报告了一种称为 SyMAPS(系统突变和组装粒子选择)的技术,该技术可用于表征自组装病毒结构蛋白的所有单个氨基酸变异体的组装能力。对 MS2 噬菌体外壳蛋白的 SyMAPS 研究揭示了一个高分辨率的适应度景观,这对蛋白质工程的一些传统假设提出了挑战。再一轮选择确定了一个以前未知的变体(CP[T71H]),它在中性 pH 值下稳定,但比野生型外壳蛋白更不耐酸性条件。这种变体形成的衣壳在晚期内体或早期溶酶体中更容易解体——这是用于递药应用的一个有利特征。除了为病毒样颗粒提供可变性蓝图外,SyMAPS 还可以很容易地应用于其他自组装蛋白质。