Suppr超能文献

基于改进的自适应Ⅱ型逐次截尾数据对逻辑指数分布进行贝叶斯和非贝叶斯推断。

Bayesian and non-bayesian inference for logistic-exponential distribution using improved adaptive type-II progressively censored data.

机构信息

Division of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India.

Department of Statistics and Operation Research, College of Science, Qassim University, Buraydah, Saudi Arabia.

出版信息

PLoS One. 2024 May 16;19(5):e0298638. doi: 10.1371/journal.pone.0298638. eCollection 2024.

Abstract

Improved adaptive type-II progressive censoring schemes (IAT-II PCS) are increasingly being used to estimate parameters and reliability characteristics of lifetime distributions, leading to more accurate and reliable estimates. The logistic exponential distribution (LED), a flexible distribution with five hazard rate forms, is employed in several fields, including lifetime, financial, and environmental data. This research aims to enhance the accuracy and reliability estimation capabilities for the logistic exponential distribution under IAT-II PCS. By developing novel statistical inference methods, we can better understand the behavior of failure times, allow for more accurate decision-making, and improve the overall reliability of the model. In this research, we consider both classical and Bayesian techniques. The classical technique involves constructing maximum likelihood estimators of the model parameters and their asymptotic covariance matrix, followed by estimating the distribution's reliability using survival and hazard functions. The delta approach is used to create estimated confidence intervals for the model parameters. In the Bayesian technique, prior information about the LED parameters is used to estimate the posterior distribution of the parameters, which is derived using Bayes' theorem. The model's reliability is determined by computing the posterior predictive distribution of the survival or hazard functions. Extensive simulation studies and real-data applications assess the effectiveness of the proposed methods and evaluate their performance against existing methods.

摘要

改进的自适应 II 型逐次截尾方案(IAT-II PCS)越来越多地被用于估计寿命分布的参数和可靠性特征,从而得出更准确和可靠的估计值。逻辑指数分布(LED)是一种具有五种危险率形式的灵活分布,应用于寿命、金融和环境数据等多个领域。本研究旨在提高 IAT-II PCS 下逻辑指数分布的准确性和可靠性估计能力。通过开发新的统计推断方法,我们可以更好地了解失效时间的行为,进行更准确的决策,并提高模型的整体可靠性。在本研究中,我们同时考虑了经典和贝叶斯技术。经典技术涉及构建模型参数的最大似然估计及其渐近协方差矩阵,然后使用生存和危险函数来估计分布的可靠性。Delta 方法用于为模型参数创建估计置信区间。在贝叶斯技术中,使用 LED 参数的先验信息来估计参数的后验分布,该分布是使用贝叶斯定理得出的。通过计算生存或危险函数的后验预测分布来确定模型的可靠性。广泛的模拟研究和实际数据应用评估了所提出方法的有效性,并评估了它们与现有方法的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验