Department of Statistics and Operation Research, Faculty of Science, King Saud University, KSA.
Math Biosci Eng. 2022 Jan 4;19(3):2330-2354. doi: 10.3934/mbe.2022108.
In this study, we estimate the unknown parameters, reliability, and hazard functions using a generalized Type-I progressive hybrid censoring sample from a Weibull distribution. Maximum likelihood (ML) and Bayesian estimates are calculated using a choice of prior distributions and loss functions, including squared error, general entropy, and LINEX. Unobserved failure point and interval Bayesian predictions, as well as a future progressive censored sample, are also developed. Finally, we run some simulation tests for the Bayesian approach and numerical example on real data sets using the MCMC algorithm.
在这项研究中,我们使用来自威布尔分布的广义 I 型逐次混合删失样本估计未知参数、可靠性和风险函数。使用选择的先验分布和损失函数(包括平方误差、广义熵和 LINEX)计算最大似然(ML)和贝叶斯估计。还开发了未观测到的失效点和区间贝叶斯预测,以及未来的逐次删失样本。最后,我们使用 MCMC 算法对贝叶斯方法进行了一些模拟测试,并使用真实数据集进行了数值示例。