Department Physical Sciences, Mathematics Programme, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria.
SDG 4: Quality Education Research Group, Landmark University, Omu-Aran, Nigeria.
PLoS One. 2024 May 16;19(5):e0301505. doi: 10.1371/journal.pone.0301505. eCollection 2024.
In the era of computational advancements, harnessing computer algorithms for approximating solutions to differential equations has become indispensable for its unparalleled productivity. The numerical approximation of partial differential equation (PDE) models holds crucial significance in modelling physical systems, driving the necessity for robust methodologies. In this article, we introduce the Implicit Six-Point Block Scheme (ISBS), employing a collocation approach for second-order numerical approximations of ordinary differential equations (ODEs) derived from one or two-dimensional physical systems. The methodology involves transforming the governing PDEs into a fully-fledged system of algebraic ordinary differential equations by employing ISBS to replace spatial derivatives while utilizing a central difference scheme for temporal or y-derivatives. In this report, the convergence properties of ISBS, aligning with the principles of multi-step methods, are rigorously analyzed. The numerical results obtained through ISBS demonstrate excellent agreement with theoretical solutions. Additionally, we compute absolute errors across various problem instances, showcasing the robustness and efficacy of ISBS in practical applications. Furthermore, we present a comprehensive comparative analysis with existing methodologies from recent literature, highlighting the superior performance of ISBS. Our findings are substantiated through illustrative tables and figures, underscoring the transformative potential of ISBS in advancing the numerical approximation of two-dimensional PDEs in physical systems.
在计算技术飞速发展的时代,利用计算机算法来近似求解微分方程已经成为必不可少的手段,因为它具有无与伦比的生产力。偏微分方程(PDE)模型的数值逼近在物理系统建模中具有重要意义,因此需要稳健的方法。在本文中,我们介绍了隐式六点块格式(ISBS),它采用配置方法对来自一维或二维物理系统的常微分方程(ODE)进行二阶数值逼近。该方法通过使用 ISBS 替换空间导数,同时使用中心差分格式对时间或 y 导数进行处理,将控制 PDE 转换为一个完整的代数常微分方程组。在本报告中,严格分析了与多步方法原则一致的 ISBS 的收敛特性。通过 ISBS 获得的数值结果与理论解非常吻合。此外,我们针对各种问题实例计算了绝对误差,展示了 ISBS 在实际应用中的稳健性和有效性。此外,我们还与最近文献中的现有方法进行了全面的比较分析,突出了 ISBS 的优越性能。我们的研究结果通过说明性表格和图形得到了证实,强调了 ISBS 在推进物理系统中二维 PDE 的数值逼近方面的变革潜力。