Suppr超能文献

伽马分布延迟微分方程的数值方法和次指数近似

Numerical methods and hypoexponential approximations for gamma distributed delay differential equations.

作者信息

Cassidy Tyler, Gillich Peter, Humphries Antony R, van Dorp Christiaan H

机构信息

Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

Department of Mathematics and Statistics, McGill University, Montreal, Quebec 3A 0G4, Canada.

出版信息

IMA J Appl Math. 2022 Dec 13;87(6):1043-1089. doi: 10.1093/imamat/hxac027. eCollection 2022 Dec.

Abstract

Gamma distributed delay differential equations (DDEs) arise naturally in many modelling applications. However, appropriate numerical methods for generic gamma distributed DDEs have not previously been implemented. Modellers have therefore resorted to approximating the gamma distribution with an Erlang distribution and using the linear chain technique to derive an equivalent system of ordinary differential equations (ODEs). In this work, we address the lack of appropriate numerical tools for gamma distributed DDEs in two ways. First, we develop a functional continuous Runge-Kutta (FCRK) method to numerically integrate the gamma distributed DDE without resorting to Erlang approximation. We prove the fourth-order convergence of the FCRK method and perform numerical tests to demonstrate the accuracy of the new numerical method. Nevertheless, FCRK methods for infinite delay DDEs are not widely available in existing scientific software packages. As an alternative approach to solving gamma distributed DDEs, we also derive a hypoexponential approximation of the gamma distributed DDE. This hypoexponential approach is a more accurate approximation of the true gamma distributed DDE than the common Erlang approximation but, like the Erlang approximation, can be formulated as a system of ODEs and solved numerically using standard ODE software. Using our FCRK method to provide reference solutions, we show that the common Erlang approximation may produce solutions that are qualitatively different from the underlying gamma distributed DDE. However, the proposed hypoexponential approximations do not have this limitation. Finally, we apply our hypoexponential approximations to perform statistical inference on synthetic epidemiological data to illustrate the utility of the hypoexponential approximation.

摘要

伽马分布延迟微分方程(DDEs)在许多建模应用中自然出现。然而,此前尚未实现适用于一般伽马分布DDEs的合适数值方法。因此,建模者们 resort to 使用埃尔朗分布来近似伽马分布,并使用线性链技术来推导一个等效的常微分方程(ODEs)系统。在这项工作中,我们通过两种方式解决伽马分布DDEs缺乏合适数值工具的问题。首先,我们开发了一种函数连续龙格 - 库塔(FCRK)方法,用于对伽马分布DDEs进行数值积分,而无需借助埃尔朗近似。我们证明了FCRK方法的四阶收敛性,并进行了数值测试以证明新数值方法的准确性。然而,用于无限延迟DDEs的FCRK方法在现有的科学软件包中并不广泛可用。作为求解伽马分布DDEs的另一种方法,我们还推导了伽马分布DDEs的次指数近似。这种次指数方法是比常见的埃尔朗近似更准确地逼近真实伽马分布DDEs的方法,但与埃尔朗近似一样,可以被表述为一个ODEs系统,并使用标准的ODE软件进行数值求解。使用我们的FCRK方法提供参考解,我们表明常见的埃尔朗近似可能会产生与基础伽马分布DDEs在性质上不同的解。然而,所提出的次指数近似没有这个局限性。最后,我们应用我们的次指数近似对合成的流行病学数据进行统计推断,以说明次指数近似的效用。

相似文献

1
Numerical methods and hypoexponential approximations for gamma distributed delay differential equations.
IMA J Appl Math. 2022 Dec 13;87(6):1043-1089. doi: 10.1093/imamat/hxac027. eCollection 2022 Dec.
2
Building mean field ODE models using the generalized linear chain trick & Markov chain theory.
J Biol Dyn. 2021 May;15(sup1):S248-S272. doi: 10.1080/17513758.2021.1912418. Epub 2021 Apr 13.
3
Generalizations of the 'Linear Chain Trick': incorporating more flexible dwell time distributions into mean field ODE models.
J Math Biol. 2019 Oct;79(5):1831-1883. doi: 10.1007/s00285-019-01412-w. Epub 2019 Aug 13.
4
Exploring inductive linearization for pharmacokinetic-pharmacodynamic systems of nonlinear ordinary differential equations.
J Pharmacokinet Pharmacodyn. 2018 Feb;45(1):35-47. doi: 10.1007/s10928-017-9527-z. Epub 2017 May 26.
5
Solving delay differential equations in S-ADAPT by method of steps.
Comput Methods Programs Biomed. 2013 Sep;111(3):715-34. doi: 10.1016/j.cmpb.2013.05.026. Epub 2013 Jun 27.
6
Delay differential equations based models in NONMEM.
J Pharmacokinet Pharmacodyn. 2021 Dec;48(6):763-802. doi: 10.1007/s10928-021-09770-z. Epub 2021 Jul 23.
7
Coexistence in two-species competition with delayed maturation.
J Math Biol. 2023 Dec 19;88(1):11. doi: 10.1007/s00285-023-02031-2.
10
A new framework for polynomial approximation to differential equations.
Adv Comput Math. 2022;48(6):76. doi: 10.1007/s10444-022-09992-w. Epub 2022 Nov 14.

本文引用的文献

1
Stan: A Probabilistic Programming Language.
J Stat Softw. 2017;76. doi: 10.18637/jss.v076.i01. Epub 2017 Jan 11.
2
A generalized differential equation compartmental model of infectious disease transmission.
Infect Dis Model. 2021 Sep 11;6:1073-1091. doi: 10.1016/j.idm.2021.08.007. eCollection 2021.
3
Model-based evaluation of school- and non-school-related measures to control the COVID-19 pandemic.
Nat Commun. 2021 Mar 12;12(1):1614. doi: 10.1038/s41467-021-21899-6.
5
How fast is the linear chain trick? A rigorous analysis in the context of behavioral epidemiology.
Math Biosci Eng. 2020 Jul 24;17(5):5059-5084. doi: 10.3934/mbe.2020273.
6
High Contagiousness and Rapid Spread of Severe Acute Respiratory Syndrome Coronavirus 2.
Emerg Infect Dis. 2020 Jul;26(7):1470-1477. doi: 10.3201/eid2607.200282. Epub 2020 Jun 21.
7
Finite dimensional state representation of physiologically structured populations.
J Math Biol. 2020 Jan;80(1-2):205-273. doi: 10.1007/s00285-019-01454-0. Epub 2019 Dec 21.
8
Determinants of combination GM-CSF immunotherapy and oncolytic virotherapy success identified through in silico treatment personalization.
PLoS Comput Biol. 2019 Nov 27;15(11):e1007495. doi: 10.1371/journal.pcbi.1007495. eCollection 2019 Nov.
9
Equivalences between age structured models and state dependent distributed delay differential equations.
Math Biosci Eng. 2019 Jun 11;16(5):5419-5450. doi: 10.3934/mbe.2019270.
10
Generalizations of the 'Linear Chain Trick': incorporating more flexible dwell time distributions into mean field ODE models.
J Math Biol. 2019 Oct;79(5):1831-1883. doi: 10.1007/s00285-019-01412-w. Epub 2019 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验