Sahoo Anubhab, Dixit Tejendra, Anil Kumar K V, Lakshmi Ganapathi K, Nayak Pramoda K, Rao M S Ramachandra, Krishnan Sivarama
Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India.
Optoelectronics and Quantum Devices Group, Department of Electronics and Communication Engineering, Indian Institute of Information Technology Design and Manufacturing Kancheepuram, Chennai 600127, India.
J Phys Chem Lett. 2024 May 30;15(21):5586-5593. doi: 10.1021/acs.jpclett.4c00215. Epub 2024 May 16.
Herein, MoS quantum dots (QDs) with controlled optical, structural, and electronic properties are synthesized using the femtosecond pulsed laser ablation in liquid (fs-PLAL) technique by varying the pulse width, ablation power, and ablation time to harness the potential for next-generation optoelectronics and quantum technology. Furthermore, this work elucidates key aspects of the mechanisms underlying the near-UV and blue emissions the accompanying large Stokes shift, and the consequent change in sample color with laser exposure parameters pertaining to MoS QDs. Through spectroscopic analysis, including UV-visible absorption, photoluminescence, and Raman spectroscopy, we successfully unraveled the mechanisms for the change in optoelectronic properties of MoS QDs with laser parameters. We realize that the occurrence of a secondary phase, specifically MoO, is responsible for the significant Stokes shift and blue emission observed in this QD system. The primary factor influencing these activities is the electron transfer observed between these two phases, as validated by excitation-dependent photoluminescence and XPS and Raman spectroscopies.
在此,通过改变脉冲宽度、烧蚀功率和烧蚀时间,利用飞秒脉冲激光液体烧蚀(fs-PLAL)技术合成了具有可控光学、结构和电子特性的二硫化钼量子点(QDs),以挖掘其在下一代光电子学和量子技术方面的潜力。此外,这项工作阐明了与二硫化钼量子点相关的近紫外和蓝光发射、伴随的大斯托克斯位移以及样品颜色随激光曝光参数变化的潜在机制的关键方面。通过包括紫外可见吸收、光致发光和拉曼光谱在内的光谱分析,我们成功揭示了二硫化钼量子点的光电特性随激光参数变化的机制。我们认识到,次生相(特别是MoO)的出现是导致该量子点系统中观察到显著斯托克斯位移和蓝光发射的原因。如通过激发依赖光致发光、X射线光电子能谱和拉曼光谱所验证的,影响这些现象的主要因素是在这两个相之间观察到的电子转移。