Suppr超能文献

神经批评学习与加速价值迭代的非线性模型预测控制。

Neural critic learning with accelerated value iteration for nonlinear model predictive control.

机构信息

Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China; Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing 100124, China; Beijing Institute of Artificial Intelligence, Beijing University of Technology, Beijing 100124, China; Beijing Laboratory of Smart Environmental Protection, Beijing University of Technology, Beijing 100124, China.

出版信息

Neural Netw. 2024 Aug;176:106364. doi: 10.1016/j.neunet.2024.106364. Epub 2024 May 6.

Abstract

In practical industrial processes, the receding optimization solution of nonlinear model predictive control (NMPC) is always a very knotty problem. Based on adaptive dynamic programming, the accelerated value iteration predictive control (AVI-PC) algorithm is developed in this paper. Integrating iteration learning with the receding horizon mechanism of NMPC, a novel receding optimization solution pattern is exploited to resolve the optimal control law in each prediction horizon. Besides, the basic architecture and the specific form of the AVI-PC algorithm are demonstrated, including the relationship among the iterative learning process, the prediction process, and the control process. On this basis, the convergence and admissibility conditions are established, and the relevant properties are comprehensively analyzed when the accelerated factor satisfies the established conditions. Furthermore, the accelerated value iterative function is approximated through the single critic network constructed by utilizing the multiple linear regression method. Finally, the plentiful simulation experiments are conducted from various perspectives to verify the effectiveness and progressiveness of the AVI-PC algorithm.

摘要

在实际工业过程中,非线性模型预测控制(NMPC)的滚动优化解一直是一个非常棘手的问题。本文基于自适应动态规划,开发了加速值迭代预测控制(AVI-PC)算法。通过将迭代学习与 NMPC 的滚动时域机制相结合,提出了一种新的滚动优化解决方案模式,用于解决每个预测时域中的最优控制律。此外,还展示了 AVI-PC 算法的基本架构和具体形式,包括迭代学习过程、预测过程和控制过程之间的关系。在此基础上,建立了收敛性和可容许性条件,并在加速因子满足所建立条件时综合分析了相关性质。进一步地,通过利用多元线性回归方法构建的单个评论家网络对加速值迭代函数进行了逼近。最后,从多个角度进行了大量的仿真实验,验证了 AVI-PC 算法的有效性和先进性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验