Yuan Hao, Zhang Qiran, Cheng Yunqi, Xu Rongyu, Li Haoran, Tian Mengyao, Ma Jinming, Jiao Tifeng
State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China.
State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China.
J Colloid Interface Sci. 2024 Sep 15;670:41-49. doi: 10.1016/j.jcis.2024.05.054. Epub 2024 May 10.
Iontronic pressure sensors have garnered significant attention for their potential in wearable electronic devices. While simple microstructures can enhance sensor sensitivity, the majority of them predominantly amplify sensitivity at lower pressure ranges and fail to enhance sensitivity at higher pressure ranges, leading to nonlinearity. In the absence of linear sensitivity in a pressure sensor, users are unable to derive precise information from its output, necessitating further signal processing. Hence, crafting a linearity flexible pressure sensor through a straightforward approach remains a formidable task. Herein, a double-sided microstructured flexible iontronic pressure sensor is presented with wide linear sensing range. The ionic gel is made by 1-Ethyl-3-methylimidazolium bis(tri-fluoromethylsulfonyl)imide (EMIM:TFSI) into the matrix of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), which acts as active layer, featuring irregular microstructures (IMS) and pyramid microstructures (PMS) on both sides. Unlike previous complex methods, IMS and uniform PMS are easily and achieved through pattern transfer from a sandpaper mold and micro-pyramid template. The iontronic pressure sensor exhibits exceptional signal linearity with R values of 0.9975 and 0.9985, in the wide pressure range from 100 to 760 kPa and 760 kPa to 1000 kPa, respectively. This outstanding linearity and wide sensing range stem from a delicate balance between microstructure compression and mechanical alignment at the ionic gel interface. This study provides valuable insights into achieving linear responses by strategically designing microstructures in flexible pressure sensors, with potential applications in intelligent robots and health monitoring.
离子电子压力传感器因其在可穿戴电子设备中的潜力而备受关注。虽然简单的微结构可以提高传感器的灵敏度,但大多数微结构主要在较低压力范围内放大灵敏度,而在较高压力范围内无法提高灵敏度,从而导致非线性。如果压力传感器缺乏线性灵敏度,用户就无法从其输出中获得精确信息,这就需要进一步的信号处理。因此,通过一种简单的方法制造具有线性灵活性的压力传感器仍然是一项艰巨的任务。在此,我们展示了一种具有宽线性传感范围的双面微结构柔性离子电子压力传感器。离子凝胶是由1-乙基-3-甲基咪唑双(三氟甲基磺酰)亚胺(EMIM:TFSI)制成的聚(偏二氟乙烯-共-六氟丙烯)(PVDF-HFP)基质,作为活性层,两侧具有不规则微结构(IMS)和金字塔微结构(PMS)。与以往复杂的方法不同,IMS和均匀的PMS可以通过从砂纸模具和微金字塔模板进行图案转移轻松实现。该离子电子压力传感器在100至760 kPa和760 kPa至1000 kPa的宽压力范围内分别表现出出色的信号线性,R值分别为0.9975和0.9985。这种出色的线性度和宽传感范围源于离子凝胶界面处微结构压缩和机械排列之间的微妙平衡。这项研究为通过在柔性压力传感器中进行微结构的策略性设计来实现线性响应提供了有价值的见解,在智能机器人和健康监测方面具有潜在应用。