Suppr超能文献

自然语言处理识别有潜在失能风险且无明显预嘱或代理人的家庭保健患者。

Natural Language Processing to Identify Home Health Care Patients at Risk for Becoming Incapacitated With No Evident Advance Directives or Surrogates.

机构信息

Department of Biobehavioral Health Sciences, University of Pennsylvania School of Nursing, Philadelphia, PA, USA.

Columbia University School of Nursing, New York, NY, USA; Data Science Institute, Columbia University, New York, NY, USA; Center for Home Care Policy & Research, VNS Health, New York, NY, USA.

出版信息

J Am Med Dir Assoc. 2024 Aug;25(8):105019. doi: 10.1016/j.jamda.2024.105019. Epub 2024 May 14.

Abstract

OBJECTIVES

Home health care patients who are at risk for becoming Incapacitated with No Evident Advance Directives or Surrogates (INEADS) may benefit from timely intervention to assist them with advance care planning. This study aimed to develop natural language processing algorithms for identifying home care patients who do not have advance directives, family members, or close social contacts who can serve as surrogate decision-makers in the event that they lose decisional capacity.

DESIGN

Cross-sectional study of electronic health records.

SETTING AND PARTICIPANTS

Patients receiving post-acute care discharge services from a large home health agency in New York City in 2019 (n = 45,390 enrollment episodes).

METHODS

We developed a natural language processing algorithm for identifying information documented in free-text clinical notes (n = 1,429,030 notes) related to 4 categories: evidence of close relationships, evidence of advance directives, evidence suggesting lack of close relationships, and evidence suggesting lack of advance directives. We validated the algorithm against Gold Standard clinician review for 50 patients (n = 314 notes) to calculate precision, recall, and F-score.

RESULTS

Algorithm performance for identifying text related to the 4 categories was excellent (average F-score = 0.91), with the best results for "evidence of close relationships" (F-score = 0.99) and the worst results for "evidence of advance directives" (F-score = 0.86). The algorithm identified 22% of all clinical notes (313,290 of 1,429,030) as having text related to 1 or more categories. More than 98% of enrollment episodes (48,164 of 49,141) included at least 1 clinical note containing text related to 1 or more categories.

CONCLUSIONS AND IMPLICATIONS

This study establishes the feasibility of creating an automated screening algorithm to aid home health care agencies with identifying patients at risk of becoming INEADS. This screening algorithm can be applied as part of a multipronged approach to facilitate clinician support for advance care planning with patients at risk of becoming INEADS.

摘要

目的

有成为无预嘱或无代理人(INEADS)失能风险的家庭保健患者可能受益于及时干预,以帮助他们进行预先护理计划。本研究旨在开发自然语言处理算法,以识别没有预嘱、没有家庭成员或没有亲密社交联系人的家庭保健患者,以便在他们丧失决策能力时充当代理决策者。

设计

横断面研究电子健康记录。

地点和参与者

2019 年在纽约市一家大型家庭保健机构接受康复后护理出院服务的患者(n=45390 个入院期)。

方法

我们开发了一种自然语言处理算法,用于识别自由文本临床记录中与 4 个类别相关的信息:亲密关系的证据、预先指示的证据、缺乏亲密关系的证据和缺乏预先指示的证据。我们针对 50 名患者(n=314 份记录)对该算法进行了黄金标准临床医生审查,以计算精度、召回率和 F 分数。

结果

用于识别与 4 个类别相关的文本的算法性能非常出色(平均 F 分数=0.91),其中“亲密关系的证据”的结果最好(F 分数=0.99),而“预先指示的证据”的结果最差(F 分数=0.86)。该算法识别出所有临床记录的 22%(1429030 份中的 313290 份)与 1 个或多个类别有关的文本。超过 98%的入院期(49141 份中的 48164 份)至少包含 1 份包含与 1 个或多个类别相关的文本的临床记录。

结论和意义

本研究确立了创建自动筛选算法来帮助家庭保健机构识别有成为 INEADS 风险的患者的可行性。该筛选算法可作为多管齐下方法的一部分,以促进有成为 INEADS 风险的患者的临床医生支持预先护理计划。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验