Suppr超能文献

注射器过滤器在样品过滤过程中对微污染物的损失:选择合适过滤器的机器学习方法。

Loss of micropollutants on syringe filters during sample filtration: Machine learning approach for selecting appropriate filters.

机构信息

Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul, 02792, Republic of Korea.

Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.

出版信息

Chemosphere. 2024 Jul;359:142327. doi: 10.1016/j.chemosphere.2024.142327. Epub 2024 May 14.

Abstract

Prefiltration before chromatographic analysis is critical in the monitoring of environmental micropollutants (MPs). However, in an aqueous matrix, such monitoring often leads to out-of-specification results owing to the loss of MPs on syringe filters. Therefore, this study investigated the loss of seventy MPs on eight different syringe filters by employing Random Forest, a machine learning algorithm. The results indicate that the loss of MPs during filtration is filter specific, with glass microfiber and polytetrafluoroethylene filters being the most effective (<20%) compared with nylon (>90%) and others (regenerated-cellulose, polyethersulfone, polyvinylidene difluoride, cellulose acetate, and polypropylene). The Random Forest classifier showed outstanding performance (accuracy range 0.81-0.95) for determining whether the loss of MPs on filters exceeded 20%. Important factors in this classification were analyzed using the SHapley Additive exPlanation value and Kruskal-Wallis test. The results show that the physicochemical properties (LogKow/LogD, pKa, functional groups, and charges) of MPs are more important than the operational parameters (sample volume, filter pore size, diameter, and flow rate) in determining the loss of most MPs on syringe filters. However, other important factors such as the implications of the roles of pH for nylon and pre-rinsing for PTFE syringe filters should not be ignored. Overall, this study provides a systematic framework for understanding the behavior of various MP classes and their potential losses on syringe filters.

摘要

在环境微量污染物(MPs)的监测中,色谱分析前的预过滤至关重要。然而,在水基质中,由于 MPs 在注射器滤器上的损失,这种监测通常会导致结果不符合规范。因此,本研究采用机器学习算法随机森林(Random Forest)研究了 70 种 MPs 在八种不同注射器滤器上的损失。结果表明,MPs 在过滤过程中的损失是滤器特异性的,与尼龙(>90%)相比,玻璃微纤维和聚四氟乙烯(PTFE)滤器的效果最好(<20%),而其他滤器(再生纤维素、聚醚砜、聚偏二氟乙烯、醋酸纤维素和聚丙烯)的效果较差。随机森林分类器在确定 MPs 在滤器上的损失是否超过 20%时表现出出色的性能(准确性范围为 0.81-0.95)。使用 Shapley Additive exPlanation 值和 Kruskal-Wallis 检验分析了该分类中的重要因素。结果表明,MPs 的物理化学性质(LogKow/LogD、pKa、官能团和电荷)比操作参数(样品体积、滤器孔径、直径和流速)更重要,这些因素决定了大多数 MPs 在注射器滤器上的损失。然而,其他重要因素,如 pH 对尼龙的影响以及 PTFE 注射器滤器的预冲洗作用,也不应忽视。总体而言,本研究为理解各种 MP 类别的行为及其在注射器滤器上潜在损失提供了系统的框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验