Suppr超能文献

2023 年冠状动脉钙化:LDL-C 目标、非他汀类药物治疗和阿司匹林应用指南。

Coronary artery calcium in 2023: Guidelines for LDL-C goals, non-statin therapies, and aspirin use.

机构信息

Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

出版信息

Prog Cardiovasc Dis. 2024 May-Jun;84:2-6. doi: 10.1016/j.pcad.2024.05.004. Epub 2024 May 15.

Abstract

Personalizing risk assessment and treatment decisions for the primary prevention of atherosclerotic cardiovascular disease (ASCVD) rely on pooled cohort equations and increasingly coronary artery calcium (CAC) score. A growing body of evidence supports that elevated CAC scores correspond to progressively elevated ASCVD risk, and that scores of ≥100, ≥300, and ≥1000 denote risk that is equivalent to certain secondary prevention populations. This has led consensus guidelines to incorporate CAC score thresholds for guiding escalation of preventive therapy for lowering low-density lipoprotein cholesterol goals, initiation of non-statin lipid lowering medications, and use of low-dose daily aspirin. As data on CAC continues to grow, more decision pathways will incorporate CAC score cutoffs to guide management of blood pressure and cardiometabolic medications. CAC score is also being used to enrich clinical trial study populations for elevated ASCVD risk, and to screen for subclinical coronary atherosclerosis in patients who received chest imaging for other diagnostic purposes.

摘要

个体化评估动脉粥样硬化性心血管疾病(ASCVD)一级预防的风险和治疗决策依赖于汇总队列方程和不断增加的冠状动脉钙(CAC)评分。越来越多的证据支持升高的 CAC 评分与逐渐升高的 ASCVD 风险相对应,评分≥100、≥300 和≥1000 表示风险等同于某些二级预防人群。这导致共识指南纳入 CAC 评分阈值,以指导降低低密度脂蛋白胆固醇目标的预防性治疗、启动非他汀类降脂药物以及使用低剂量每日阿司匹林的药物治疗的升级。随着 CAC 数据的不断增加,更多的决策路径将纳入 CAC 评分切点,以指导血压和心脏代谢药物的管理。CAC 评分也用于为 ASCVD 风险升高的临床试验研究人群提供丰富的资源,并在因其他诊断目的而接受胸部成像检查的患者中筛查亚临床冠状动脉粥样硬化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验