Huang Yihua, Liang Zhenhao, Zeng Jiaolong, Yuan Jianmin
College of Science, Zhejiang University of Technology, Hangzhou Zhejiang 310023, People's Republic of China.
Institute of Atomic and Molecular Physics, Jilin University, Changchun Jilin 130012, People's Republic of China.
Phys Rev E. 2024 Apr;109(4-2):045210. doi: 10.1103/PhysRevE.109.045210.
For low-density plasmas, the ionization balance can be properly described by the normal Saha equation in the chemical picture. For dense plasmas, however, nonideal effects due to the interactions between the electrons and ions and among the electrons themselves affect the ionization potential depression and the ionization balance. With the increasing of plasma density, the pressure ionization starts to play a more obvious role and competes with the thermal ionization. Based on a local-density temperature-dependent ion-sphere model, we develop a unified and self-consistent theoretical formalism to simultaneously investigate the ionization potential depression, the ionization balance, and the charge states distributions of the dense plasmas. In this work, we choose Al and Au plasmas as examples as Al is a prototype light element and Au is an important heavy element in many research fields such as in the inertial confinement fusion. The nonideal effect of the free electrons in the plasmas is considered by the single-electron effective potential contributed by both the bound electrons of different charge states and the free electrons in the plasmas. For the Al plasmas, we can reconcile the results of two experiments on measuring the ionization potential depression, in which one experiment can be better explained by the Stewart-Pyatt model while the other fits better with the Ecker-Kröll model. For dense Au plasmas, the results show that the double peak structure of the charge state distribution appears to be a common phenomenon. In particular, the calculated ionization balance shows that the two- and three-peak structures can appear simultaneously for denser Au plasmas above ∼30g/cm^{3}.
对于低密度等离子体,在化学图景中,电离平衡可以用常规的萨哈方程恰当地描述。然而,对于稠密等离子体,电子与离子之间以及电子自身之间的相互作用所导致的非理想效应会影响电离势降低和电离平衡。随着等离子体密度的增加,压力电离开始发挥更显著的作用,并与热电离相互竞争。基于局部密度温度相关的离子球模型,我们发展了一种统一且自洽的理论形式,以同时研究稠密等离子体的电离势降低、电离平衡和电荷态分布。在这项工作中,我们选择铝和金等离子体作为例子,因为铝是一种典型的轻元素,而金在许多研究领域(如惯性约束聚变)中是一种重要的重元素。等离子体中自由电子的非理想效应通过不同电荷态的束缚电子和等离子体中的自由电子共同贡献的单电子有效势来考虑。对于铝等离子体,我们可以协调两个测量电离势降低的实验结果,其中一个实验用斯图尔特 - 派亚特模型能更好地解释,而另一个则与埃克尔 - 克罗尔模型拟合得更好。对于稠密金等离子体,结果表明电荷态分布的双峰结构似乎是一种常见现象。特别是,计算得到的电离平衡表明,对于密度大于约30g/cm³ 的更稠密金等离子体,双峰和三峰结构可能会同时出现。