Suppr超能文献

二分混合IRT模型模型选择中使用的拟合指数评估

An Evaluation of Fit Indices Used in Model Selection of Dichotomous Mixture IRT Models.

作者信息

Sen Sedat, Cohen Allan S

机构信息

Harran University, Sanliurfa, Turkey.

University of Georgia, Athens, USA.

出版信息

Educ Psychol Meas. 2024 Jun;84(3):481-509. doi: 10.1177/00131644231180529. Epub 2023 Jun 26.

Abstract

A Monte Carlo simulation study was conducted to compare fit indices used for detecting the correct latent class in three dichotomous mixture item response theory (IRT) models. Ten indices were considered: Akaike's information criterion (AIC), the corrected AIC (AICc), Bayesian information criterion (BIC), consistent AIC (CAIC), Draper's information criterion (DIC), sample size adjusted BIC (SABIC), relative entropy, the integrated classification likelihood criterion (ICL-BIC), the adjusted Lo-Mendell-Rubin (LMR), and Vuong-Lo-Mendell-Rubin (VLMR). The accuracy of the fit indices was assessed for correct detection of the number of latent classes for different simulation conditions including sample size (2,500 and 5,000), test length (15, 30, and 45), mixture proportions (equal and unequal), number of latent classes (2, 3, and 4), and latent class separation (no-separation and small separation). Simulation study results indicated that as the number of examinees or number of items increased, correct identification rates also increased for most of the indices. Correct identification rates by the different fit indices, however, decreased as the number of estimated latent classes or parameters (i.e., model complexity) increased. Results were good for BIC, CAIC, DIC, SABIC, ICL-BIC, LMR, and VLMR, and the relative entropy index tended to select correct models most of the time. Consistent with previous studies, AIC and AICc showed poor performance. Most of these indices had limited utility for three-class and four-class mixture 3PL model conditions.

摘要

进行了一项蒙特卡罗模拟研究,以比较用于在三种二分混合项目反应理论(IRT)模型中检测正确潜在类别的拟合指数。考虑了十个指数:赤池信息准则(AIC)、校正后的AIC(AICc)、贝叶斯信息准则(BIC)、一致AIC(CAIC)、德雷珀信息准则(DIC)、样本量调整后的BIC(SABIC)、相对熵、综合分类似然准则(ICL-BIC)、调整后的洛-门德尔-鲁宾(LMR)和Vuong-洛-门德尔-鲁宾(VLMR)。针对不同模拟条件下潜在类别的数量的正确检测,评估了拟合指数的准确性,这些条件包括样本量(2500和5000)、测试长度(15、30和45)、混合比例(相等和不相等)、潜在类别的数量(2、3和4)以及潜在类别的分离程度(无分离和小分离)。模拟研究结果表明,随着考生数量或项目数量的增加,大多数指数的正确识别率也会提高。然而,随着估计的潜在类别或参数数量(即模型复杂性)的增加,不同拟合指数的正确识别率会降低。BIC、CAIC、DIC、SABIC、ICL-BIC、LMR和VLMR的结果较好,相对熵指数在大多数情况下倾向于选择正确的模型。与先前的研究一致,AIC和AICc表现不佳。这些指数中的大多数在三类和四类混合3PL模型条件下的效用有限。

相似文献

1
An Evaluation of Fit Indices Used in Model Selection of Dichotomous Mixture IRT Models.
Educ Psychol Meas. 2024 Jun;84(3):481-509. doi: 10.1177/00131644231180529. Epub 2023 Jun 26.
3
Comparison of Relative Fit Indices for Diagnostic Model Selection.
Appl Psychol Meas. 2017 Sep;41(6):422-438. doi: 10.1177/0146621617695521. Epub 2017 Mar 8.
4
Model Selection for Multilevel Mixture Rasch Models.
Appl Psychol Meas. 2019 Jun;43(4):272-289. doi: 10.1177/0146621618779990. Epub 2018 Jun 7.
5
Statistical Power to Detect the Correct Number of Classes in Latent Profile Analysis.
Struct Equ Modeling. 2013 Oct 1;20(4):640-657. doi: 10.1080/10705511.2013.824781.
6
The Impact of Sample Size and Various Other Factors on Estimation of Dichotomous Mixture IRT Models.
Educ Psychol Meas. 2023 Jun;83(3):520-555. doi: 10.1177/00131644221094325. Epub 2022 May 19.
7
Performance of growth mixture models in the presence of time-varying covariates.
Behav Res Methods. 2017 Oct;49(5):1951-1965. doi: 10.3758/s13428-016-0823-0.
8
Sample Size Requirements for Applying Mixed Polytomous Item Response Models: Results of a Monte Carlo Simulation Study.
Front Psychol. 2019 Nov 13;10:2494. doi: 10.3389/fpsyg.2019.02494. eCollection 2019.

引用本文的文献

1
On the Use of Elbow Plot Method for Class Enumeration in Factor Mixture Models.
Appl Psychol Meas. 2025 May 20:01466216251344288. doi: 10.1177/01466216251344288.

本文引用的文献

1
The Impact of Sample Size and Various Other Factors on Estimation of Dichotomous Mixture IRT Models.
Educ Psychol Meas. 2023 Jun;83(3):520-555. doi: 10.1177/00131644221094325. Epub 2022 May 19.
2
An overview of mixture modelling for latent evolutions in longitudinal data: Modelling approaches, fit statistics and software.
Adv Life Course Res. 2020 Mar;43:100323. doi: 10.1016/j.alcr.2019.100323. Epub 2020 Jan 25.
3
A Comparison of Label Switching Algorithms in the Context of Growth Mixture Models.
Educ Psychol Meas. 2021 Aug;81(4):668-697. doi: 10.1177/0013164420970614. Epub 2020 Nov 16.
5
Sample Size Requirements for Applying Mixed Polytomous Item Response Models: Results of a Monte Carlo Simulation Study.
Front Psychol. 2019 Nov 13;10:2494. doi: 10.3389/fpsyg.2019.02494. eCollection 2019.
6
Model Selection for Multilevel Mixture Rasch Models.
Appl Psychol Meas. 2019 Jun;43(4):272-289. doi: 10.1177/0146621618779990. Epub 2018 Jun 7.
7
: An Package for Facilitating Large-Scale Latent Variable Analyses in .
Struct Equ Modeling. 2018;25(4):621-638. doi: 10.1080/10705511.2017.1402334. Epub 2018 Jan 19.
8
Ignoring a Multilevel Structure in Mixture Item Response Models: Impact on Parameter Recovery and Model Selection.
Appl Psychol Meas. 2018 Mar;42(2):136-154. doi: 10.1177/0146621617711999. Epub 2017 Jun 19.
9
Parameter recovery and model selection in mixed Rasch models.
Br J Math Stat Psychol. 2012 May;65(2):251-62. doi: 10.1111/j.2044-8317.2011.02020.x. Epub 2011 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验