Suppr超能文献

生长混合模型背景下标签切换算法的比较

A Comparison of Label Switching Algorithms in the Context of Growth Mixture Models.

作者信息

Cassiday Kristina R, Cho Youngmi, Harring Jeffrey R

机构信息

University of Maryland, College Park, MD, USA.

Cambium Assessment Inc., Washington, DC, USA.

出版信息

Educ Psychol Meas. 2021 Aug;81(4):668-697. doi: 10.1177/0013164420970614. Epub 2020 Nov 16.

Abstract

Simulation studies involving mixture models inevitably aggregate parameter estimates and other output across numerous replications. A primary issue that arises in these methodological investigations is label switching. The current study compares several label switching corrections that are commonly used when dealing with mixture models. A growth mixture model is used in this simulation study, and the design crosses three manipulated variables-number of latent classes, latent class probabilities, and class separation, yielding a total of 18 conditions. Within each of these conditions, the accuracy of a priori identifiability constraints, a priori training of the algorithm, and four post hoc algorithms developed by Tueller et al.; Cho; Stephens; and Rodriguez and Walker are tested to determine their classification accuracy. Findings reveal that, of all a priori methods, training of the algorithm leads to the most accurate classification under all conditions. In a case where an a priori algorithm is not selected, Rodriguez and Walker's algorithm is an excellent choice if interested specifically in aggregating class output without consideration as to whether the classes are accurately ordered. Using any of the post hoc algorithms tested yields improvement over baseline accuracy and is most effective under two-class models when class separation is high. This study found that if the class constraint algorithm was used a priori, it should be combined with a post hoc algorithm for accurate classification.

摘要

涉及混合模型的模拟研究不可避免地会在众多重复实验中汇总参数估计值和其他输出结果。这些方法学研究中出现的一个主要问题是标签切换。本研究比较了处理混合模型时常用的几种标签切换校正方法。本模拟研究使用了一个增长混合模型,设计涉及三个操纵变量——潜在类别数量、潜在类别概率和类别分离,共产生18种条件。在这些条件中的每一种条件下,对先验可识别性约束的准确性、算法的先验训练以及由图勒等人、赵、斯蒂芬斯以及罗德里格斯和沃克开发的四种事后算法进行测试,以确定它们的分类准确性。研究结果表明,在所有先验方法中,算法训练在所有条件下都能带来最准确的分类。在未选择先验算法的情况下,如果特别关注汇总类别输出而不考虑类别是否准确排序,罗德里格斯和沃克的算法是一个不错的选择。使用所测试的任何一种事后算法都能提高基线准确性,并且在两类模型中,当类别分离度较高时最为有效。本研究发现,如果先验使用类别约束算法,应将其与事后算法相结合以进行准确分类。

相似文献

1
4
Allocation Variable-Based Probabilistic Algorithm to Deal with Label Switching Problem in Bayesian Mixture Models.
PLoS One. 2015 Oct 12;10(10):e0138899. doi: 10.1371/journal.pone.0138899. eCollection 2015.
6
Overfitting Bayesian Mixture Models with an Unknown Number of Components.具有未知组件数量的过拟合贝叶斯混合模型。
PLoS One. 2015 Jul 15;10(7):e0131739. doi: 10.1371/journal.pone.0131739. eCollection 2015.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验