Erlanger Erica, Bufe Aaron, Paris Guillaume, D'Angeli Ilenia, Pisani Luca, Kemeny Preston Cosslett, Stammeier Jessica, Haghipour Negar, Hovius Niels
GFZ German Research Centre for Geosciences, Potsdam, Germany.
Centre de Recherches Pétrographiques et Géochimiques, CRPG UMR 7358, Université de Lorraine-CNRS, Nancy, France.
Nat Geosci. 2024;17(5):465-471. doi: 10.1038/s41561-024-01396-3. Epub 2024 Apr 19.
Recent studies increasingly recognize the importance of critical-zone weathering during mountain building for long-term CO drawdown and release. However, the focus on near-surface weathering reactions commonly does not account for CO emissions from the crust, which could outstrip CO drawdown where carbonates melt and decarbonize during subduction and metamorphism. We analyse water chemistry from streams in Italy's central Apennines that cross a gradient in heat flow and crustal thickness with relatively constant climatic conditions. We quantify the balance of inorganic carbon fluxes from near-surface weathering processes, metamorphism and the melting of carbonates. We find that, at the regional scale, carbon emissions from crustal sources outpace near-surface fluxes by two orders of magnitude above a tear in the subducting slab characterized by heat flow greater than 150 mW m and crustal thickness of less than 25 km. By contrast, weathering processes dominate the carbon budget where crustal thickness exceeds 40 km and heat flow is lower than 30 mW m. The observed variation in metamorphic fluxes is one to two orders of magnitude larger than that of weathering fluxes. We therefore suggest that geodynamic modulations of metamorphic melting and decarbonation reactions are an efficient process by which tectonics can regulate the inorganic carbon cycle.
近期研究越来越认识到造山过程中临界带风化对于长期二氧化碳消耗和释放的重要性。然而,对近地表风化反应的关注通常未考虑地壳中的二氧化碳排放,在俯冲和变质过程中碳酸盐熔融和脱碳时,这种排放可能超过二氧化碳的消耗。我们分析了意大利亚平宁山脉中部溪流的水化学情况,这些溪流跨越了热流和地壳厚度梯度,气候条件相对恒定。我们量化了近地表风化过程、变质作用和碳酸盐熔融产生的无机碳通量平衡。我们发现,在区域尺度上,在地壳厚度小于25千米且热流大于150毫瓦/平方米的俯冲板块撕裂上方,地壳源的碳排放比近地表通量高出两个数量级。相比之下,在地壳厚度超过40千米且热流低于30毫瓦/平方米的地方,风化过程主导着碳收支。观察到的变质通量变化比风化通量变化大1至2个数量级。因此,我们认为变质熔融和脱碳反应的地球动力学调制是构造作用调节无机碳循环的一个有效过程。