Woods Hole Oceanographic Institution, Department of Marine Chemistry and Geochemistry, 360 Woods Hole Road, Woods Hole, Massachusetts 02543, USA.
1] Woods Hole Oceanographic Institution, Department of Marine Chemistry and Geochemistry, 360 Woods Hole Road, Woods Hole, Massachusetts 02543, USA [2] Geological Institute, Department of Earth Sciences, Sonneggstrasse 5, Eidgenössische Technische Hochschule, 8092 Zürich, Switzerland.
Nature. 2015 May 14;521(7551):204-7. doi: 10.1038/nature14400.
Riverine export of particulate organic carbon (POC) to the ocean affects the atmospheric carbon inventory over a broad range of timescales. On geological timescales, the balance between sequestration of POC from the terrestrial biosphere and oxidation of rock-derived (petrogenic) organic carbon sets the magnitude of the atmospheric carbon and oxygen reservoirs. Over shorter timescales, variations in the rate of exchange between carbon reservoirs, such as soils and marine sediments, also modulate atmospheric carbon dioxide levels. The respective fluxes of biospheric and petrogenic organic carbon are poorly constrained, however, and mechanisms controlling POC export have remained elusive, limiting our ability to predict POC fluxes quantitatively as a result of climatic or tectonic changes. Here we estimate biospheric and petrogenic POC fluxes for a suite of river systems representative of the natural variability in catchment properties. We show that export yields of both biospheric and petrogenic POC are positively related to the yield of suspended sediment, revealing that POC export is mostly controlled by physical erosion. Using a global compilation of gauged suspended sediment flux, we derive separate estimates of global biospheric and petrogenic POC fluxes of 157(+74)(-50) and 43(+61)(-25) megatonnes of carbon per year, respectively. We find that biospheric POC export is primarily controlled by the capacity of rivers to mobilize and transport POC, and is largely insensitive to the magnitude of terrestrial primary production. Globally, physical erosion rates affect the rate of biospheric POC burial in marine sediments more strongly than carbon sequestration through silicate weathering. We conclude that burial of biospheric POC in marine sediments becomes the dominant long-term atmospheric carbon dioxide sink under enhanced physical erosion.
河流向海洋输送的颗粒有机碳(POC)对大气碳储量的影响范围很广,跨越了多个时间尺度。从地质时间尺度来看,陆地生物圈中 POC 的固定与源自岩石的有机碳(生源)的氧化之间的平衡,决定了大气碳和氧库的规模。在较短的时间尺度上,碳库(如土壤和海洋沉积物)之间的交换速率变化也会调节大气二氧化碳水平。然而,生源和生源有机碳的通量都受到很大的限制,而且控制 POC 输出的机制也难以捉摸,这限制了我们定量预测由于气候或构造变化而导致的 POC 通量的能力。在这里,我们针对一系列具有流域特性自然变异性的河流系统来估算生源和生源 POC 的通量。结果表明,生源和生源 POC 的输出产率均与悬浮泥沙的输出产率呈正相关,这表明 POC 的输出主要受物理侵蚀控制。利用全球有测站的悬浮泥沙通量汇编,我们分别得出了全球生源和生源 POC 通量的估计值,分别为每年 157(+74)(-50) 和 43(+61)(-25) 百万吨碳。我们发现,生源 POC 的输出主要受河流搬运和输运 POC 的能力控制,而对陆地初级生产力的大小基本不敏感。在全球范围内,物理侵蚀速率对生源 POC 在海洋沉积物中埋藏的影响比硅酸盐风化的碳封存更为强烈。我们的结论是,在增强的物理侵蚀下,生源 POC 在海洋沉积物中的埋藏将成为大气二氧化碳的主要长期汇。