Suppr超能文献

人工智能辅助预测身体健康检查中乳腺恶性肿瘤的前瞻性研究:现成人工智能软件的作用及与放射科医生表现的比较

Prospective study of AI-assisted prediction of breast malignancies in physical health examinations: role of off-the-shelf AI software and comparison to radiologist performance.

作者信息

Ma Sai, Li Yanfang, Yin Jun, Niu Qinghua, An Zichen, Du Lianfang, Li Fan, Gu Jiying

机构信息

Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Department of Ultrasound, Shanghai Fourth People's Hospital, Shanghai, China.

出版信息

Front Oncol. 2024 May 2;14:1374278. doi: 10.3389/fonc.2024.1374278. eCollection 2024.

Abstract

OBJECTIVE

In physical health examinations, breast sonography is a commonly used imaging method, but it can lead to repeated exams and unnecessary biopsy due to discrepancies among radiologists and health centers. This study explores the role of off-the-shelf artificial intelligence (AI) software in assisting radiologists to classify incidentally found breast masses in two health centers.

METHODS

Female patients undergoing breast ultrasound examinations with incidentally discovered breast masses were categorized according to the 5 edition of the Breast Imaging Reporting and Data System (BI-RADS), with categories 3 to 5 included in this study. The examinations were conducted at two municipal health centers from May 2021 to May 2023.The final pathological results from surgical resection or biopsy served as the gold standard for comparison. Ultrasonographic images were obtained in longitudinal and transverse sections, and two junior radiologists and one senior radiologist independently assessed the images without knowing the pathological findings. The BI-RADS classification was adjusted following AI assistance, and diagnostic performance was compared using receiver operating characteristic curves.

RESULTS

A total of 196 patients with 202 breast masses were included in the study, with pathological results confirming 107 benign and 95 malignant masses. The receiver operating characteristic curve showed that experienced breast radiologists had higher diagnostic performance in BI-RADS classification than junior radiologists, similar to AI classification (AUC = 0.936, 0.806, 0.896, and 0.950, < 0.05). The AI software improved the accuracy, sensitivity, and negative predictive value of the adjusted BI-RADS classification for the junior radiologists' group (< 0.05), while no difference was observed in the senior radiologist group. Furthermore, AI increased the negative predictive value for BI-RADS 4a masses and the positive predictive value for 4b masses among radiologists ( < 0.05). AI enhances the sensitivity of invasive breast cancer detection more effectively than ductal carcinoma and rare subtypes of breast cancer.

CONCLUSIONS

The AI software enhances diagnostic efficiency for breast masses, reducing the performance gap between junior and senior radiologists, particularly for BI-RADS 4a and 4b masses. This improvement reduces unnecessary repeat examinations and biopsies, optimizing medical resource utilization and enhancing overall diagnostic effectiveness.

摘要

目的

在身体健康检查中,乳房超声检查是一种常用的成像方法,但由于放射科医生和医疗中心之间的差异,可能会导致重复检查和不必要的活检。本研究探讨了现成的人工智能(AI)软件在协助放射科医生对两个医疗中心偶然发现的乳房肿块进行分类中的作用。

方法

对接受乳房超声检查且偶然发现乳房肿块的女性患者,根据《乳腺影像报告和数据系统》(BI-RADS)第5版进行分类,本研究纳入3至5类。检查于2021年5月至2023年5月在两个市级医疗中心进行。手术切除或活检的最终病理结果作为比较的金标准。获取纵向和横向切面的超声图像,两名初级放射科医生和一名高级放射科医生在不知道病理结果的情况下独立评估图像。在人工智能辅助后调整BI-RADS分类,并使用受试者操作特征曲线比较诊断性能。

结果

本研究共纳入196例患者的202个乳房肿块,病理结果证实107个为良性肿块,95个为恶性肿块。受试者操作特征曲线显示,经验丰富的乳腺放射科医生在BI-RADS分类中的诊断性能高于初级放射科医生,与人工智能分类相似(AUC = 0.936、0.806、0.896和0.950,<0.05)。人工智能软件提高了初级放射科医生组调整后的BI-RADS分类的准确性、敏感性和阴性预测值(<0.05),而在高级放射科医生组中未观察到差异。此外,人工智能提高了放射科医生对BI-RADS 4a类肿块的阴性预测值和对4b类肿块的阳性预测值(<0.05)。与导管癌和罕见亚型乳腺癌相比,人工智能能更有效地提高浸润性乳腺癌检测的敏感性。

结论

人工智能软件提高了乳房肿块的诊断效率,缩小了初级和高级放射科医生之间的性能差距,特别是对于BI-RADS 4a和4b类肿块。这种改进减少了不必要的重复检查和活检,优化了医疗资源利用并提高了整体诊断效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eefa/11096442/abc32bee4d38/fonc-14-1374278-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验