Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clnical Research Center of Interventional Medicine, Shanghai, 200072, PR China.
Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, PR China.
Eur J Radiol. 2021 Jun;139:109717. doi: 10.1016/j.ejrad.2021.109717. Epub 2021 Apr 12.
Ultrasound (US), a flexible green imaging modality, is expanding globally as a first-line imaging technique in various clinical fields following with the continual emergence of advanced ultrasonic technologies and the well-established US-based digital health system. Actually, in US practice, qualified physicians should manually collect and visually evaluate images for the detection, identification and monitoring of diseases. The diagnostic performance is inevitably reduced due to the intrinsic property of high operator-dependence from US. In contrast, artificial intelligence (AI) excels at automatically recognizing complex patterns and providing quantitative assessment for imaging data, showing high potential to assist physicians in acquiring more accurate and reproducible results. In this article, we will provide a general understanding of AI, machine learning (ML) and deep learning (DL) technologies; We then review the rapidly growing applications of AI-especially DL technology in the field of US-based on the following anatomical regions: thyroid, breast, abdomen and pelvis, obstetrics heart and blood vessels, musculoskeletal system and other organs by covering image quality control, anatomy localization, object detection, lesion segmentation, and computer-aided diagnosis and prognosis evaluation; Finally, we offer our perspective on the challenges and opportunities for the clinical practice of biomedical AI systems in US.
超声(US)作为一种灵活的绿色成像方式,在全球范围内得到了扩展,在各个临床领域中作为一线成像技术,这得益于先进的超声技术的不断涌现和成熟的基于 US 的数字健康系统。实际上,在 US 实践中,合格的医生应该手动收集和直观地评估图像,以检测、识别和监测疾病。由于 US 高度依赖操作人员,因此其诊断性能不可避免地会降低。相比之下,人工智能(AI)擅长自动识别复杂模式,并为成像数据提供定量评估,这显示出了辅助医生获得更准确和可重复结果的巨大潜力。在本文中,我们将对 AI、机器学习(ML)和深度学习(DL)技术有一个总体的了解;然后,我们将根据以下解剖区域综述 AI 的快速发展的应用——特别是在 US 领域的 DL 技术:甲状腺、乳腺、腹部和盆腔、妇产科、心血管、肌肉骨骼系统和其他器官,涵盖图像质量控制、解剖定位、目标检测、病变分割以及计算机辅助诊断和预后评估;最后,我们将对 US 中生物医学 AI 系统的临床实践的挑战和机遇提出看法。
Eur J Radiol. 2021-6
World J Gastroenterol. 2019-2-14
Nat Rev Cancer. 2018-8
Radiol Phys Technol. 2020-3
Front Endocrinol (Lausanne). 2025-5-21
Bioengineering (Basel). 2025-3-13
Diagn Pathol. 2025-3-7