Suppr超能文献

扫描电化学显微镜与光学显微镜相结合:探究液流电池中增强型微粒内电荷转移的原位局部路径

Scanning Electrochemical Microscopy Meets Optical Microscopy: Probing the Local Paths of Charge Transfer Operando in Booster-Microparticles for Flow Batteries.

作者信息

Moghaddam Mahdi, Godeffroy Louis, Jasielec Jerzy J, Kostopoulos Nikolaos, Noël Jean-Marc, Piquemal Jean-Yves, Lemineur Jean-François, Peljo Pekka, Kanoufi Frédéric

机构信息

Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, Turun Yliopisto, 20014, Finland.

Université Paris Cité, CNRS, ITODYS, Paris, F-75013, France.

出版信息

Small. 2024 Sep;20(36):e2309607. doi: 10.1002/smll.202309607. Epub 2024 May 17.

Abstract

Understanding the oxidation/reduction dynamics of secondary microparticles formed from agglomerated nanoscale primary particles is crucial for advancing electrochemical energy storage technologies. In this study, the behavior of individual copper hexacyanoferrate (CuHCF) microparticles is explored at both global and local scales combining scanning electrochemical microscopy (SECM), for electrochemical interrogation of a single, but global-scale microparticle, and optical microscopy monitoring to obtain a higher resolution dynamic image of the local electrochemistry within the same particle. Chronoamperometric experiments unveil a multistep oxidation/reduction process with varying dynamics. On the one hand, the global SECM analysis enables quantifying the charge transfer as well as its dynamics at the single microparticle level during the oxidation/reduction cycles by a redox mediator in solution. These conditions allow mimicking the charge storage processes in these particles when they are used as solid boosters in redox flow batteries. On the other hand, optical imaging with sub-particle resolution allows the mapping of local conversion rates and state-of-charge within individual CuHCF particles. These maps reveal that regions of different material loadings exhibit varying charge storage capacities and conversion rates. The findings highlight the significance of porous nanostructures and provide valuable insights for designing more efficient energy storage materials.

摘要

了解由团聚的纳米级初级颗粒形成的次级微粒的氧化/还原动力学对于推进电化学储能技术至关重要。在本研究中,结合扫描电化学显微镜(SECM)在全局和局部尺度上探索了单个六氰合铁酸铜(CuHCF)微粒的行为,用于对单个但全局尺度的微粒进行电化学询问,并通过光学显微镜监测以获得同一颗粒内局部电化学的更高分辨率动态图像。计时电流实验揭示了一个具有不同动力学的多步氧化/还原过程。一方面,全局SECM分析能够在氧化/还原循环期间通过溶液中的氧化还原介质在单个微粒水平上量化电荷转移及其动力学。这些条件允许模拟这些颗粒在用作氧化还原液流电池中的固体增强剂时的电荷存储过程。另一方面,具有亚颗粒分辨率的光学成像允许绘制单个CuHCF颗粒内的局部转化率和充电状态。这些图谱表明,不同材料负载区域表现出不同的电荷存储容量和转化率。这些发现突出了多孔纳米结构的重要性,并为设计更高效的储能材料提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验