Suppr超能文献

氧化还原活性聚合物作为用于能量存储的可溶性纳米材料。

Redox Active Polymers as Soluble Nanomaterials for Energy Storage.

机构信息

Joint Center for Energy Storage Research , Argonne, Illinois 60439, United States.

出版信息

Acc Chem Res. 2016 Nov 15;49(11):2649-2657. doi: 10.1021/acs.accounts.6b00341. Epub 2016 Sep 27.

Abstract

It is an exciting time for exploring the synergism between the chemical and dimensional properties of redox nanomaterials for addressing the manifold performance demands faced by energy storage technologies. The call for widespread adoption of alternative energy sources requires the combination of emerging chemical concepts with redesigned battery formats. Our groups are interested in the development and implementation of a new strategy for nonaqueous flow batteries (NRFBs) for grid energy storage. Our motivation is to solve major challenges in NRFBs, such as the lack of membranes that simultaneously allow fast ion transport while minimizing redox active species crossover between anolyte (negative electrolyte) and catholyte (positive electrolyte) compartments. This pervasive crossover leads to deleterious capacity fade and materials underutilization. In this Account, we highlight redox active polymers (RAPs) and related polymer colloids as soluble nanoscopic energy storing units that enable the simple but powerful size-exclusion concept for NRFBs. Crossover of the redox component is suppressed by matching high molecular weight RAPs with simple and inexpensive nanoporous commercial separators. In contrast to the vast literature on the redox chemistry of electrode-confined polymer films, studies on the electrochemistry of solubilized RAPs are incipient. This is due in part to challenges in finding suitable solvents that enable systematic studies on high polymers. Here, viologen-, ferrocene- and nitrostyrene-based polymers in various formats exhibit properties that make amenable their electrochemical exploration as solution-phase redox couples. A main finding is that RAP solutions store energy efficiently and reversibly while offering chemical modularity and size versatility. Beyond the practicality toward their use in NRFBs, the fundamental electrochemistry exhibited by RAPs is fascinating, showing clear distinctions in behavior from that of small molecules. Whereas RAPs conveniently translate the redox properties of small molecules into a nanostructure, they give rise to charge transfer mechanisms and electrolyte interactions that elicit distinct electrochemical responses. To understand how the electrochemical characteristics of RAPs depend on molecular features, including redox moiety, macromolecular size, and backbone structure, a range of techniques has been employed by our groups, including voltammetry at macro- and microelectrodes, rotating disk electrode voltammetry, bulk electrolysis, and scanning electrochemical microscopy. RAPs rely on three-dimensional charge transfer within their inner bulk, which is an efficient process and allows quantitative electrolysis of particles of up to ∼800 nm in radius. Interestingly, we find that interactions between neighboring pendants create unique opportunities for fine-tuning their electrochemical reactivity. Furthermore, RAP interrogation toward the single particle limit promises to shed light on fundamental charge storage mechanisms.

摘要

这是探索氧化还原纳米材料的化学和维度特性协同作用以满足储能技术多方面性能需求的激动人心时刻。广泛采用替代能源的需求要求将新兴化学概念与重新设计的电池结构相结合。我们的研究小组对开发和实施用于电网储能的新型非水流动电池(NRFB)策略感兴趣。我们的动机是解决 NRFB 中的主要挑战,例如缺乏同时允许快速离子传输同时最小化在阳极(负电解质)和阴极(正电解质)隔室之间的氧化还原活性物质交叉的膜。这种普遍的交叉导致有害的容量衰减和材料未充分利用。在本说明中,我们强调氧化还原活性聚合物(RAP)及其相关聚合物胶体作为可溶性纳米尺度储能单元,使 NRFB 能够实现简单但强大的尺寸排除概念。通过将高分子量 RAP 与简单且廉价的纳米多孔商业隔板匹配,可以抑制氧化还原组分的交叉。与电极受限聚合物膜的氧化还原化学的大量文献相比,对溶解的 RAP 的电化学的研究还处于初期阶段。部分原因是在找到能够对高聚物进行系统研究的合适溶剂方面存在挑战。在这里,各种形式的基于紫精,二茂铁和硝酰基苯乙烯的聚合物表现出的性质使它们能够作为溶液相氧化还原偶进行电化学探索。一个主要发现是 RAP 溶液可以有效地可逆地存储能量,同时提供化学模块化和尺寸多功能性。除了在 NRFB 中使用的实用性之外,RAP 表现出的基本电化学性质也很吸引人,它显示出与小分子的行为明显区别。尽管 RAP 方便地将小分子的氧化还原性质转化为纳米结构,但它们引起电荷转移机制和电解质相互作用,从而产生独特的电化学响应。为了了解 RAP 的电化学特性如何取决于分子特征,包括氧化还原部分,大分子尺寸和骨架结构,我们的研究小组采用了一系列技术,包括宏观和微电极的伏安法,旋转圆盘电极伏安法,体积电解和扫描电化学显微镜。RAP 依赖于其内部本体中的三维电荷转移,这是一个有效的过程,允许对半径高达约 800nm 的颗粒进行定量电解。有趣的是,我们发现相邻侧链之间的相互作用为精细调节其电化学反应性创造了独特的机会。此外,对单个颗粒极限的 RAP 检测有望阐明基本的电荷存储机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验