Suppr超能文献

基于双碳背景的中国电力行业碳排放预测分析。

Prediction analysis of carbon emission in China's electricity industry based on the dual carbon background.

机构信息

School of Environmental Science and Engineering, Tianjin University, Tianjin, P.R. China.

State Nuclear Electric Power Planning Design & Research Institute, Beijing, P.R. China.

出版信息

PLoS One. 2024 May 17;19(5):e0302068. doi: 10.1371/journal.pone.0302068. eCollection 2024.

Abstract

The electric power sector is the primary contributor to carbon emissions in China. Considering the context of dual carbon goals, this paper examines carbon emissions within China's electricity sector. The research utilizes the LMDI approach for methodological rigor. The results show that the cumulative contribution of economies scale, power consumption factors and energy structure are 114.91%, 85.17% and 0.94%, which contribute to the increase of carbon emissions, the cumulative contribution of power generation efficiency and ratio of power dissipation to generation factor are -19.15% and -0.01%, which promotes the carbon reduction. The decomposition analysis highlights the significant influence of economic scale on carbon emissions in the electricity industry, among the seven factors investigated. Meanwhile, STIRPAT model, Logistic model and GM(1,1) model are used to predict carbon emissions, the average relative error between actual carbon emissions and the predicted values are 0.23%, 8.72% and 7.05%, which indicates that STIRPAT model is more suitable for medium- to long-term predictions. Based on these findings, the paper proposes practical suggestions to reduce carbon emissions and achieve the dual carbon goals of the power industry.

摘要

电力行业是中国碳排放的主要贡献者。考虑到双碳目标的背景,本文研究了中国电力行业的碳排放问题。研究采用 LMDI 方法进行了严谨的方法学分析。结果表明,经济规模、电力消费因素和能源结构的累积贡献分别为 114.91%、85.17%和 0.94%,这三个因素导致了碳排放的增加;发电效率和单位耗电率的累积贡献分别为-19.15%和-0.01%,这两个因素促进了碳减排。分解分析突出了经济规模对电力行业碳排放的重要影响,在七个考察因素中最为显著。同时,本文还使用 STIRPAT 模型、Logistic 模型和 GM(1,1)模型对碳排放量进行了预测,实际碳排放量与预测值的平均相对误差分别为 0.23%、8.72%和 7.05%,表明 STIRPAT 模型更适合中短期预测。基于这些发现,本文提出了切实可行的建议,以减少碳排放,实现电力行业的双碳目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5299/11101092/bf10d9382531/pone.0302068.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验