Suppr超能文献

无纠缠情况下泡利信道学习的紧密界

Tight Bounds on Pauli Channel Learning without Entanglement.

作者信息

Chen Senrui, Oh Changhun, Zhou Sisi, Huang Hsin-Yuan, Jiang Liang

机构信息

Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA.

Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.

出版信息

Phys Rev Lett. 2024 May 3;132(18):180805. doi: 10.1103/PhysRevLett.132.180805.

Abstract

Quantum entanglement is a crucial resource for learning properties from nature, but a precise characterization of its advantage can be challenging. In this Letter, we consider learning algorithms without entanglement to be those that only utilize states, measurements, and operations that are separable between the main system of interest and an ancillary system. Interestingly, we show that these algorithms are equivalent to those that apply quantum circuits on the main system interleaved with mid-circuit measurements and classical feedforward. Within this setting, we prove a tight lower bound for Pauli channel learning without entanglement that closes the gap between the best-known upper and lower bound. In particular, we show that Θ(2^{n}ϵ^{-2}) rounds of measurements are required to estimate each eigenvalue of an n-qubit Pauli channel to ϵ error with high probability when learning without entanglement. In contrast, a learning algorithm with entanglement only needs Θ(ϵ^{-2}) copies of the Pauli channel. The tight lower bound strengthens the foundation for an experimental demonstration of entanglement-enhanced advantages for Pauli noise characterization.

摘要

量子纠缠是从自然界学习特性的关键资源,但其优势的精确表征可能具有挑战性。在本信函中,我们将无纠缠学习算法定义为仅利用在感兴趣的主系统和辅助系统之间可分离的态、测量和操作的算法。有趣的是,我们表明这些算法等同于那些在主系统上应用量子电路并穿插进行电路中测量和经典前馈的算法。在此框架内,我们证明了无纠缠的泡利信道学习的一个紧密下界,该下界弥合了已知最佳上界和下界之间的差距。特别地,我们表明在无纠缠学习时,以高概率将一个(n)量子比特泡利信道的每个本征值估计到(\epsilon)误差需要(\Theta(2^{n}\epsilon^{-2}))轮测量。相比之下,有纠缠的学习算法仅需要(\Theta(\epsilon^{-2}))个泡利信道副本。这个紧密下界加强了用于泡利噪声表征的纠缠增强优势的实验演示的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验