Huang Jieshan, Li Xudong, Chen Xiaojiong, Zhai Chonghao, Zheng Yun, Chi Yulin, Li Yan, He Qiongyi, Gong Qihuang, Wang Jianwei
State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, 100871, Beijing, China.
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
Nat Commun. 2024 Mar 23;15(1):2601. doi: 10.1038/s41467-024-46830-7.
Complex entangled states are the key resources for measurement-based quantum computations, which is realised by performing a sequence of measurements on initially entangled qubits. Executable quantum algorithms in the graph-state quantum computing model are determined by the entanglement structure and the connectivity of entangled qubits. By generalisation from graph-type entanglement in which only the nearest qubits interact to a new type of hypergraph entanglement in which any subset of qubits can be arbitrarily entangled via hyperedges, hypergraph states represent more general resource states that allow arbitrary quantum computation with Pauli universality. Here we report experimental preparation, certification and processing of complete categories of four-qubit hypergraph states under the principle of local unitary equivalence, on a fully reprogrammable silicon-photonic quantum chip. Genuine multipartite entanglement for hypergraph states is certificated by the characterisation of entanglement witness, and the observation of violations of Mermin inequalities without any closure of distance or detection loopholes. A basic measurement-based protocol and an efficient resource state verification by color-encoding stabilizers are implemented with local Pauli measurement to benchmark the building blocks for hypergraph-state quantum computation. Our work prototypes hypergraph entanglement as a general resource for quantum information processing.
复杂纠缠态是基于测量的量子计算的关键资源,它通过对初始纠缠量子比特执行一系列测量来实现。图态量子计算模型中的可执行量子算法由纠缠结构和纠缠量子比特的连通性决定。从仅最近邻量子比特相互作用的图型纠缠推广到通过超边任何量子比特子集都可任意纠缠的新型超图纠缠,超图态代表了更一般的资源态,允许具有泡利通用性的任意量子计算。在此,我们报告在完全可重新编程的硅光子量子芯片上,基于局部酉等价原理对完整类别的四量子比特超图态进行实验制备、验证和处理。通过纠缠见证的表征以及在无任何距离闭合或检测漏洞情况下对Mermin不等式违背的观测,验证了超图态的真正多方纠缠。利用局部泡利测量实现了一个基于基本测量的协议以及通过颜色编码稳定器进行的高效资源态验证,以此为超图态量子计算的构建模块提供基准。我们的工作将超图纠缠作为量子信息处理的一种通用资源进行了原型演示。