Pei Dating, Zeng Zhiwen, Geng Zhijie, Cai Kehan, Lu Daohuan, Guo Cuiping, Guo Huilong, Huang Jun, Gao Botao, Yu Shan
Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China.
Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China.
Int J Biol Macromol. 2024 Jun;270(Pt 2):132417. doi: 10.1016/j.ijbiomac.2024.132417. Epub 2024 May 15.
The inflammatory response plays a critical role in standard tissue repair processes, wherein active modulation of macrophage polarization is necessary for wound healing. Dopamine, a mussel-inspired bioactive material, is widely involved in wound healing, neural/bone/myocardial regeneration, and more. Recent studies indicated that dopamine-modified biomaterials can potentially alter macrophages polarization towards a pro-healing phenotype, thereby enhancing tissue regeneration. Nevertheless the immunoregulatory activity of dopamine on macrophage polarization remains unclear. This study introduces a novel interpenetrating hydrogel to bridge this research gap. The hydrogel, combining varying concentrations of oxidized dopamine with hyaluronic acid hydrogel, allows precise regulation of mechanical properties, antioxidant bioactivity, and biocompatibility. Surprisingly, both in vivo and in vitro outcomes demonstrated that dopamine concentration modulates macrophage polarization, but not linearly. Lower concentration (2 mg/mL) potentially decrease inflammation and facilitate M2 type macrophage polarization. In contrast, higher concentration (10 mg/mL) exhibited a pro-inflammatory tendency in the late stages of implantation. RNA-seq analysis revealed that lower dopamine concentrations induced the M1/M2 transition of macrophages by modulating the NF-κB signaling pathway. Collectively, this research offers valuable insights into the immunoregulation effects of dopamine-integrated biomaterials in tissue repair and regeneration.
炎症反应在标准组织修复过程中起着关键作用,其中巨噬细胞极化的主动调节对于伤口愈合是必要的。多巴胺是一种受贻贝启发的生物活性材料,广泛参与伤口愈合、神经/骨骼/心肌再生等过程。最近的研究表明,多巴胺修饰的生物材料可能会改变巨噬细胞向促愈合表型的极化,从而促进组织再生。然而,多巴胺对巨噬细胞极化的免疫调节活性仍不清楚。本研究引入了一种新型互穿水凝胶来填补这一研究空白。这种水凝胶将不同浓度的氧化多巴胺与透明质酸水凝胶结合在一起,能够精确调节机械性能、抗氧化生物活性和生物相容性。令人惊讶的是,体内和体外实验结果均表明,多巴胺浓度可调节巨噬细胞极化,但并非呈线性关系。较低浓度(2mg/mL)可能会减轻炎症并促进M2型巨噬细胞极化。相反,较高浓度(10mg/mL)在植入后期表现出促炎倾向。RNA测序分析表明,较低的多巴胺浓度通过调节NF-κB信号通路诱导巨噬细胞发生M1/M2转变。总的来说,本研究为多巴胺整合生物材料在组织修复和再生中的免疫调节作用提供了有价值的见解。