School of Aeronautics and Astronautics, State Key Laboratory of Polymer Materials Engineering of China, Robotic Satellite Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610065, People's Republic of China.
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu, 610065, People's Republic of China.
ACS Nano. 2024 Jun 4;18(22):14672-14684. doi: 10.1021/acsnano.4c02919. Epub 2024 May 17.
Flexible sensing systems (FSSs) designed to measure plantar pressure can deliver instantaneous feedback on human movement and posture. This feedback is crucial not only for preventing and controlling diseases associated with abnormal plantar pressures but also for optimizing athletes' postures to minimize injuries. The development of an optimal plantar pressure sensor hinges on key metrics such as a wide sensing range, high sensitivity, and long-term stability. However, the effectiveness of current flexible sensors is impeded by numerous challenges, including limitations in structural deformability, mechanical incompatibility between multifunctional layers, and instability under complex stress conditions. Addressing these limitations, we have engineered an integrated pressure sensing system with high sensitivity and reliability for human plantar pressure and gait analysis. It features a high-modulus, porous laminated ionic fiber structure with robust self-bonded interfaces, utilizing a unified polyimide material system. This system showcases a high sensitivity (156.6 kPa), an extensive sensing range (up to 4000 kPa), and augmented interfacial toughness and durability (over 150,000 cycles). Additionally, our FSS is capable of real-time monitoring of plantar pressure distribution across various sports activities. Leveraging deep learning, the flexible sensing system achieves a high-precision, intelligent recognition of different plantar types with a 99.8% accuracy rate. This approach provides a strategic advancement in the field of flexible pressure sensors, ensuring prolonged stability and accuracy even amidst complex pressure dynamics and providing a feasible solution for long-term gait monitoring and analysis.
灵活传感系统(FSSs)旨在测量足底压力,可以提供有关人体运动和姿势的即时反馈。这种反馈不仅对于预防和控制与异常足底压力相关的疾病至关重要,而且对于优化运动员的姿势以最大程度地减少受伤也至关重要。最佳足底压力传感器的开发取决于关键指标,例如宽的传感范围、高灵敏度和长期稳定性。然而,当前灵活传感器的有效性受到许多挑战的阻碍,包括结构可变形性的限制、多功能层之间的机械不兼容性以及在复杂应力条件下的不稳定性。为了解决这些限制,我们设计了一种具有高灵敏度和可靠性的集成压力传感系统,用于人体足底压力和步态分析。它具有高模量、多孔层压离子纤维结构,具有坚固的自粘合界面,利用统一的聚酰亚胺材料系统。该系统具有高灵敏度(156.6kPa)、宽传感范围(高达 4000kPa)以及增强的界面韧性和耐久性(超过 150,000 次循环)。此外,我们的 FSS 能够实时监测各种运动活动中的足底压力分布。利用深度学习,灵活的传感系统实现了不同足底类型的高精度、智能识别,准确率达到 99.8%。这种方法在灵活压力传感器领域取得了战略性进展,即使在复杂的压力动态下也能确保长时间的稳定性和准确性,并为长期步态监测和分析提供了可行的解决方案。