CITSEM, Universidad Politécnica de Madrid, 28031, Madrid, Spain.
Int J Comput Assist Radiol Surg. 2024 Jul;19(7):1367-1374. doi: 10.1007/s11548-024-03102-5. Epub 2024 May 18.
Magnetic resonance imaging (MRI) is a common technique in image-guided neurosurgery (IGN). Recent research explores the integration of methods like ultrasound and tomography, among others, with hyperspectral (HS) imaging gaining attention due to its non-invasive real-time tissue classification capabilities. The main challenge is the registration process, often requiring manual intervention. This work introduces an automatic, markerless method for aligning HS images with MRI.
This work presents a multimodal system that combines RGB-Depth (RGBD) and HS cameras. The RGBD camera captures the patient's facial geometry, which is used for registration with the preoperative MR through ICP. Once MR-depth registration is complete, the integration of HS data is achieved using a calibrated homography transformation. The incorporation of external tracking with a novel calibration method allows camera mobility from the registration position to the craniotomy area. This methodology streamlines the fusion of RGBD, HS and MR images within the craniotomy area.
Using the described system and an anthropomorphic phantom head, the system has been characterised by registering the patient's face in 25 positions and 5 positions resulted in a fiducial registration error of 1.88 ± 0.19 mm and a target registration error of 4.07 ± 1.28 mm, respectively.
This work proposes a new methodology to automatically register MR and HS information with a sufficient accuracy. It can support the neurosurgeons to guide the diagnosis using multimodal data over an augmented reality representation. However, in its preliminary prototype stage, this system exhibits significant promise, driven by its cost-effectiveness and user-friendly design.
磁共振成像(MRI)是影像引导神经外科(IGN)中常用的技术。最近的研究探索了将超声和断层扫描等方法与高光谱(HS)成像相结合,由于其具有非侵入性实时组织分类能力,HS 成像受到关注。主要挑战是配准过程,通常需要手动干预。这项工作介绍了一种自动、无标记的 HS 图像与 MRI 对齐方法。
这项工作提出了一种结合 RGB-Depth(RGBD)和 HS 相机的多模态系统。RGBD 相机捕获患者的面部几何形状,通过 ICP 与术前 MR 进行配准。完成 MR-depth 配准后,使用校准的单应性变换实现 HS 数据的集成。通过使用新的校准方法与外部跟踪的结合,允许相机从配准位置移动到颅骨切开区域。这种方法简化了颅骨切开区域内 RGBD、HS 和 MR 图像的融合。
使用描述的系统和一个拟人化的头部模型,在 25 个位置注册患者的面部,在 5 个位置注册时,分别得到了 1.88 ± 0.19mm 的基准配准误差和 4.07 ± 1.28mm 的目标配准误差。
这项工作提出了一种新的方法,可以以足够的精度自动注册 MR 和 HS 信息。它可以支持神经外科医生使用多模态数据在增强现实表示中进行诊断。然而,在其初步原型阶段,由于其成本效益和用户友好的设计,该系统具有很大的潜力。