College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.
School of Chemistry and Environment, Analyzing and Testing Center, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China.
Sci Total Environ. 2024 Jul 15;934:173314. doi: 10.1016/j.scitotenv.2024.173314. Epub 2024 May 16.
As emerging environmental pollutants, microplastics (MPs) and nanoplastics (NPs) pose a serious threat to human health. Owing to the lack of feasible and reliable analytical methods, the separation and identification of MPs and NPs of different sizes remains a challenge. In this study, a hyphenated method involving filtration and surface-enhanced Raman spectroscopy (SERS) for the separation and identification of MPs and NPs is reported. This method not only avoids the loss of MPs and NPs during the transfer process but also provides an excellent SERS substrate. The SERS substrate was fabricated by electrochemically depositing silver particles onto the reduced graphene oxide layer coated on stainless steel mesh. Results show that polystyrene (PS) MPs and NPs are efficiently separated on the SERS substrate via vacuum filtration, resulting in high retention rates (74.26 % ± 1.58 % for 100 nm, 81.06 % ± 1.49 % for 500 nm, and 97.73 % ±0.11 % for 5 μm) and low limit of detection (LOD). The LOD values of 100 nm, 500 nm, and 5 μm PS are 8.89 × 10, 3.39 × 10, and 1.57 × 10 μg/mL, respectively. More importantly, a linear relationship for uniform quantification of 100 nm, 500 nm, 3 μm and 5 μm PS was established, and the relationship is Y = 225.61 lgX + 1076.36 with R = 0.980. The method was validated for the quantitative analysis of a mixture of 100 nm, 500 nm PS NPs, 3 μm and 5 μm PS MPs in a ratio of 1:1:1:1, which successfully approaches the evaluation of evaluated PS NPs in the range of 10-10 μg/mL with an LOD value of approximately 7.82 × 10 μg/mL. Moreover, this method successfully detected (3.87 ± 0.06) × 10 μg MPs and NPs per gram of oyster tissue.
作为新兴的环境污染物,微塑料(MPs)和纳米塑料(NPs)对人类健康构成了严重威胁。由于缺乏可行和可靠的分析方法,不同尺寸的 MPs 和 NPs 的分离和鉴定仍然是一个挑战。在这项研究中,报道了一种涉及过滤和表面增强拉曼光谱(SERS)的 MPs 和 NPs 分离和鉴定的连接方法。该方法不仅避免了 MPs 和 NPs 在转移过程中的损失,而且还提供了出色的 SERS 基底。SERS 基底是通过在不锈钢网上涂覆的还原氧化石墨烯层上电沉积银颗粒来制备的。结果表明,通过真空过滤可有效地将聚苯乙烯(PS)MPs 和 NPs 分离到 SERS 基底上,从而实现了高保留率(100nm 时为 74.26%±1.58%,500nm 时为 81.06%±1.49%,5μm 时为 97.73%±0.11%)和低检测限(LOD)。100nm、500nm 和 5μm PS 的 LOD 值分别为 8.89×10、3.39×10 和 1.57×10μg/mL。更重要的是,建立了 100nm、500nm、3μm 和 5μm PS 的均匀定量线性关系,关系为 Y=225.61lgX+1076.36,R=0.980。该方法用于定量分析 100nm、500nm PS NPs、3μm 和 5μm PS MPs 以 1:1:1:1 比例混合的混合物,成功地评估了 10-10μg/mL 范围内的 PS NPs,LOD 值约为 7.82×10μg/mL。此外,该方法成功地检测到每克牡蛎组织中的(3.87±0.06)×10μg MPs 和 NPs。