Yang Wendong, Zhao Xun, Guo Zihao, Sun Haoqiang, List-Kratochvil Emil J W
School of Electronic and Information Engineering, Liaoning Technical University, Huludao City, 125105, China.
Institut für Physik, Institut für Chemie, IRIS Adlershof, Humboldt-Universität zu Berlin, 12489, Berlin, Germany.
Sci Rep. 2024 May 18;14(1):11407. doi: 10.1038/s41598-024-62253-2.
The rapid development of ultrawideband (UWB) communication systems has resulted in increasing performance requirements for the antenna system. In addition to a wide bandwidth, fast propagation rates and compact dimensions, flexibility, wearability or portability are also desirable for UWB antennas, as are excellent notch characteristics. Although progress has been made in the development of flexible/wearable antennas desired notch properties are still rather limited. Moreover, most presently available flexible UWB antennas are fabricated using environmentally not attractive subtractive etching-based processes. The usage of facile additive sustainably inkjet printing processes also utilizing low temperature plasma-activated conductive inks is rarely reported. In addition, the currently used tri-notched flexible UWB antenna designs have a relatively large footprint, which poses difficulties when integrated into miniaturized and compact communication devices. In this work, a silver nano ink is used to fabricate the antenna via inkjet printing and an efficient plasma sintering procedure. For the targeted UWB applications miniaturized tri-notched flexible antenna is realized on a flexible polyethylene terephthalate (PET) substrate with a compact size of 17.6 mm × 16 mm × 0.12 mm. The antenna operates in the UWB frequency band (2.9-10.61 GHz), and can shield interferences from WiMAX (3.3-3.6 GHz), WLAN (5.150-5.825 GHz) and X-uplink (7.9-8.4 GHz) bands, as well as exhibits a certain of bendability. Three nested "C" slots of different sizes were adopted to achieve notch features. The simulation and test results demonstrate that the proposed antenna can generate signal radiation in the desired UWB frequency band while retaining the desired notch properties and having acceptable SAR values on-body, making it a viable candidate for usage in flexible or wearable communication transmission devices. The research provides a facile and highly efficient method for fabricating flexible/wearable UWB antennas, that is, the effective combination of inkjet printing processing, flexible substrates, low temperature-activated conductive ink and antenna structure design.
超宽带(UWB)通信系统的快速发展对天线系统的性能要求越来越高。除了宽带宽、快速传播速率和紧凑尺寸外,UWB天线还需要具备灵活性、可穿戴性或便携性,以及出色的陷波特性。尽管在柔性/可穿戴天线的开发方面取得了进展,但所需的陷波特性仍然相当有限。此外,目前大多数可用的柔性UWB天线是采用对环境不友好的基于减法蚀刻的工艺制造的。很少有报道使用简便的、可持续的喷墨印刷工艺,同时还利用低温等离子体活化导电油墨。此外,目前使用的三陷波柔性UWB天线设计占地面积相对较大,这在集成到小型化和紧凑型通信设备时会带来困难。在这项工作中,通过喷墨印刷和高效的等离子体烧结工艺,使用银纳米油墨制造天线。针对目标UWB应用,在柔性聚对苯二甲酸乙二酯(PET)基板上实现了尺寸紧凑的17.6 mm×16 mm×0.12 mm的小型化三陷波柔性天线。该天线在UWB频段(2.9 - 10.61 GHz)工作,能够屏蔽来自WiMAX(3.3 - 3.6 GHz)、WLAN(5.150 - 5.825 GHz)和X上行链路(7.9 - 8.4 GHz)频段的干扰,并且具有一定的可弯曲性。采用三个不同尺寸的嵌套“C”形槽来实现陷波特性。仿真和测试结果表明,所提出的天线能够在所需的UWB频段产生信号辐射,同时保持所需的陷波特性,并在人体上具有可接受的比吸收率(SAR)值,使其成为柔性或可穿戴通信传输设备应用的可行候选方案。该研究为制造柔性/可穿戴UWB天线提供了一种简便且高效的方法,即喷墨印刷工艺、柔性基板、低温活化导电油墨和天线结构设计的有效结合。