Sheffield Methods Institute, University of Sheffield, UK.
Department of Sociology, University of Oregon, USA.
Soc Sci Med. 2024 Jun;351:116955. doi: 10.1016/j.socscimed.2024.116955. Epub 2024 May 11.
The intersectional Multilevel Analysis of Individual Heterogeneity and Discriminatory Accuracy (MAIHDA) approach is gaining prominence in health sciences and beyond, as a robust quantitative method for identifying intersectional inequalities in a range of individual outcomes. However, it has so far not been applied to longitudinal data, despite the availability of such data, and growing recognition that intersectional social processes and determinants are not static, unchanging phenomena. Drawing on intersectionality and life course theories, we develop a longitudinal version of the intersectional MAIHDA approach, allowing the analysis not just of intersectional inequalities in static individual differences, but also of life course trajectories. We discuss the conceptualization of intersectional groups in this context: how they are changeable over the life course, appropriate treatment of generational differences, and relevance of the age-period-cohort identification problem. We illustrate the approach with a study of mental health using United Kingdom Household Longitudinal Study data (2009-2021). The results reveal important differences in trajectories between generations and intersectional strata, and show that trajectories are partly multiplicative but mostly additive in their intersectional inequalities. This article provides an important and much needed methodological contribution, enabling rigorous quantitative, longitudinal, intersectional analyses in social epidemiology and beyond.
交叉多层次个体异质性和判别准确性分析(MAIHDA)方法在健康科学及其他领域越来越受到关注,它是一种强大的定量方法,可用于识别一系列个体结果中的交叉不平等现象。然而,尽管存在这种数据,并且越来越认识到交叉的社会过程和决定因素不是静态的、不变的现象,但迄今为止,它尚未应用于纵向数据。借鉴交叉理论和生命历程理论,我们开发了交叉 MAIHDA 方法的纵向版本,不仅允许分析静态个体差异中的交叉不平等,还允许分析生命历程轨迹。我们在这一背景下讨论了交叉群体的概念化:它们如何随生命历程而变化,代际差异的适当处理,以及年龄-时期-队列识别问题的相关性。我们使用英国家庭纵向研究数据(2009-2021 年)来演示该方法。结果揭示了代际和交叉阶层之间轨迹的重要差异,并表明轨迹在交叉不平等方面部分是相乘的,但主要是相加的。本文提供了一个重要且非常需要的方法学贡献,使社会流行病学及其他领域能够进行严格的定量、纵向、交叉分析。