Suppr超能文献

个体异质性与判别准确性的交叉多层次分析(MAIHDA)操作指南

A tutorial for conducting intersectional multilevel analysis of individual heterogeneity and discriminatory accuracy (MAIHDA).

作者信息

Evans Clare R, Leckie George, Subramanian S V, Bell Andrew, Merlo Juan

机构信息

Department of Sociology, University of Oregon, Eugene, OR, USA.

Centre for Multilevel Modelling and School of Education, University of Bristol, UK.

出版信息

SSM Popul Health. 2024 Mar 26;26:101664. doi: 10.1016/j.ssmph.2024.101664. eCollection 2024 Jun.

Abstract

Intersectional multilevel analysis of individual heterogeneity and discriminatory accuracy (I-MAIHDA) is an innovative approach for investigating inequalities, including intersectional inequalities in health, disease, psychosocial, socioeconomic, and other outcomes. I-MAIHDA and related MAIHDA approaches have conceptual and methodological advantages over conventional single-level regression analysis. By enabling the study of inequalities produced by numerous interlocking systems of marginalization and oppression, and by addressing many of the limitations of studying interactions in conventional analyses, intersectional MAIHDA provides a valuable analytical tool in social epidemiology, health psychology, precision medicine and public health, environmental justice, and beyond. The approach allows for estimation of average differences between intersectional strata (stratum inequalities), in-depth exploration of interaction effects, as well as decomposition of the total individual variation (heterogeneity) in individual outcomes within and between strata. Specific advice for conducting and interpreting MAIHDA models has been scattered across a burgeoning literature. We consolidate this knowledge into an accessible conceptual and applied tutorial for studying both continuous and binary individual outcomes. We emphasize I-MAIHDA in our illustration, however this tutorial is also informative for understanding related approaches, such as , which has been proposed for use in clinical research and beyond. The tutorial will support readers who wish to perform their own analyses and those interested in expanding their understanding of the approach. To demonstrate the methodology, we provide step-by-step analytical advice and present an illustrative health application using simulated data. We provide the data and syntax to replicate all our analyses.

摘要

个体异质性与歧视准确性的交叉多层次分析(I-MAIHDA)是一种用于研究不平等现象的创新方法,包括健康、疾病、心理社会、社会经济及其他结果方面的交叉不平等。I-MAIHDA及相关的MAIHDA方法相较于传统的单层次回归分析,在概念和方法上具有优势。通过能够研究由众多相互关联的边缘化和压迫系统产生的不平等现象,并解决传统分析中研究相互作用的许多局限性,交叉性MAIHDA在社会流行病学、健康心理学、精准医学和公共卫生、环境正义等领域提供了一种有价值的分析工具。该方法允许估计交叉阶层之间的平均差异(阶层不平等),深入探索相互作用效应,以及分解阶层内部和阶层之间个体结果中的总个体变异(异质性)。关于进行和解释MAIHDA模型的具体建议分散在大量不断涌现的文献中。我们将这些知识整合为一个易于理解的概念和应用教程,用于研究连续和二元个体结果。在我们的示例中,我们强调I-MAIHDA,然而本教程对于理解相关方法(如已被提议用于临床研究及其他领域的方法)也具有参考价值。本教程将为希望进行自己分析的读者以及有兴趣扩展对该方法理解的读者提供支持。为了演示该方法,我们提供逐步的分析建议,并使用模拟数据展示一个健康应用示例。我们提供数据和语法以复制我们所有的分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/424a/11059336/643c3ec211a1/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验