Pei Shengwei, Hoang Lan, Fu Guangtao, Butler David
Centre for Water Systems, Department of Engineering, University of Exeter, EX4 4QF, United Kingdom.
IBM Research Europe UKI, Daresbury, Warrington, United Kingdom.
J Environ Manage. 2024 Jun;360:121133. doi: 10.1016/j.jenvman.2024.121133. Epub 2024 May 19.
With climate change and urbanization, existing urban drainage systems are being stressed beyond their design capacity in many parts of the world. Real-time control (RTC) can improve the performance of these systems and reduce the need for system upgrades. However, developing optimal control policies for RTC is a challenging research area due to computational demands, high uncertainties and system dynamics. This study presents a new RTC method using neuro-evolution for controlling combined sewer overflow (CSO) in urban drainage systems. Neuro-evolution is an approach to neural network research by evolutionary algorithms. Neuro-evolution realizes RTC by training the control policy in advance, thus avoiding the online optimization process in the application period. The simulation results of the benchmark Astlingen network indicate that the trained control policy outperforms the equal filling degree strategy in terms of CSO volume reduction and robustness in the face of tank level uncertainty. The performance analysis of the typical CSO events shows that the control policy mainly makes positive contributions during 'small' CSO events rather than 'large' ones. In particular, the effectiveness of the control policy in 'small' CSO events is more prominent in the initial phase of the events compared with the final phase. This work stands to support a foundation for future studies in the control of urban water systems based on neuro-evolution.
随着气候变化和城市化进程的加快,在世界许多地区,现有的城市排水系统正面临着超出其设计能力的压力。实时控制(RTC)可以改善这些系统的性能,并减少系统升级的需求。然而,由于计算需求、高度不确定性和系统动态性,为实时控制制定最优控制策略是一个具有挑战性的研究领域。本研究提出了一种利用神经进化控制城市排水系统中合流制下水道溢流(CSO)的新实时控制方法。神经进化是一种通过进化算法进行神经网络研究的方法。神经进化通过预先训练控制策略来实现实时控制,从而避免了应用阶段的在线优化过程。基准阿斯特林根网络的仿真结果表明,在减少合流制下水道溢流量和面对水箱水位不确定性时的鲁棒性方面,训练后的控制策略优于等填充度策略。典型合流制下水道溢流事件的性能分析表明,控制策略主要在“小”合流制下水道溢流事件中发挥积极作用,而不是在“大”事件中。特别是,与事件后期相比,控制策略在“小”合流制下水道溢流事件初期的有效性更为突出。这项工作为未来基于神经进化的城市水系统控制研究奠定了基础。