Hussain Altaf, Suleiman Mohammed Y, Liu Hongzhan, Xia Shiyu, Eticha Tadele, Guan Yiran, Chen Wei, Xu Guobao
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.
Anal Chem. 2024 Jun 4;96(22):8965-8972. doi: 10.1021/acs.analchem.3c05968. Epub 2024 May 20.
Chemiresistive-based metal oxide semiconductor (MOS) gas sensors are widely used in gas sensing due to their advantageous properties. Graphitic carbon nitride (g-CN) and metal oxide heterostructure materials can improve charge transport properties, selectivity, and sensitivity in MOS gas sensor materials. Herein, for the first time, CuO hollow polyhedral structures (HPSs) were synthesized via a hydrothermal technique and annealed at different temperatures, with the 400 °C annealed (CuO-400 HPSs) demonstrating remarkable sensing capabilities for diethylamine (DEA) gas at room temperature (RT). The -g-CN nanosheets were decorated with CuO HPSs in varying amounts ( = 0.8, 1.8, 2.1, and 3.1 wt %) and then annealed at 400 °C for -g-CN-CuO-400 hollow polyhedral heterostructures (HPHSs). Indeed, among the synthesized samples, the 1.8%-g-CN-CuO-400 HPHSs have a higher sensitivity to DEA (resistance change in gas () and air (); = 65 @ 20 ppm), a low detection limit (= 6 @ 500 ppb), wide dynamic response (= 190 @ 80 ppm), strong stability (30 days), and 21.6 times higher sensitivity than pure CuO at RT toward 20 ppm of DEA. The exceptional gas-sensing behavior can be attributed to various factors, including controlled annealing conditions that result in the formation of well-defined structures and greater porosity, efficient charge transfer properties resulting from an optimized ratio of g-CN to CuO in HPHSs, an abundance of defects, unsaturated Cu sites, and synergistic effects. The study presents a universal strategy for generating sensitive and selective g-CN-based composite materials for low-temperature gas sensors.
基于化学电阻的金属氧化物半导体(MOS)气体传感器因其优异的性能而被广泛应用于气体传感领域。石墨相氮化碳(g-CN)与金属氧化物异质结构材料能够改善MOS气体传感器材料中的电荷传输性能、选择性和灵敏度。在此,首次通过水热技术合成了CuO空心多面体结构(HPSs),并在不同温度下进行退火处理,其中在400℃退火的样品(CuO-400 HPSs)在室温下对二乙胺(DEA)气体表现出卓越的传感能力。将不同含量( = 0.8、1.8、2.1和3.1 wt%)的CuO HPSs修饰在g-CN纳米片上,然后在400℃退火以制备g-CN-CuO-400空心多面体异质结构(HPHSs)。实际上,在合成的样品中,1.8%-g-CN-CuO-400 HPHSs对DEA具有更高的灵敏度(气体()和空气中的电阻变化; = 65 @ 20 ppm)、低检测限( = 6 @ 500 ppb)、宽动态响应( = 190 @ 80 ppm)、强稳定性(30天),并且在室温下对20 ppm的DEA的灵敏度比纯CuO高21.6倍。这种优异的气敏行为可归因于多种因素,包括可控的退火条件导致形成明确的结构和更大的孔隙率、HPHSs中g-CN与CuO的优化比例产生的高效电荷转移性能、大量的缺陷、不饱和的Cu位点以及协同效应。该研究提出了一种通用策略,用于制备用于低温气体传感器的灵敏且选择性的基于g-CN的复合材料。