Suppr超能文献

一个鼻子却有两个鼻孔:学会与两个嗅觉皮层之间的稀疏连接保持一致。

One nose but two nostrils: Learn to align with sparse connections between two olfactory cortices.

作者信息

Liu Bo, Qin Shanshan, Murthy Venkatesh, Tu Yuhai

机构信息

Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA.

Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Cambridge, Massachusetts, USA.

出版信息

ArXiv. 2024 May 6:arXiv:2405.03602v1.

Abstract

The integration of neural representations in the two hemispheres is an important problem in neuroscience. Recent experiments revealed that odor responses in cortical neurons driven by separate stimulation of the two nostrils are highly correlated. This bilateral alignment points to structured inter-hemispheric connections, but detailed mechanism remains unclear. Here, we hypothesized that continuous exposure to environmental odors shapes these projections and modeled it as online learning with local Hebbian rule. We found that Hebbian learning with sparse connections achieves bilateral alignment, exhibiting a linear trade-off between speed and accuracy. We identified an inverse scaling relationship between the number of cortical neurons and the inter-hemispheric projection density required for desired alignment accuracy, i.e., more cortical neurons allow sparser inter-hemispheric projections. We next compared the alignment performance of local Hebbian rule and the global stochastic-gradient-descent (SGD) learning for artificial neural networks. We found that although SGD leads to the same alignment accuracy with modestly sparser connectivity, the same inverse scaling relation holds. We showed that their similar performance originates from the fact that the update vectors of the two learning rules align significantly throughout the learning process. This insight may inspire efficient sparse local learning algorithms for more complex problems.

摘要

两个半球中神经表征的整合是神经科学中的一个重要问题。最近的实验表明,由分别刺激两个鼻孔所驱动的皮层神经元中的气味反应高度相关。这种双侧对齐表明存在结构化的半球间连接,但详细机制仍不清楚。在这里,我们假设持续暴露于环境气味会塑造这些投射,并将其建模为基于局部赫布法则的在线学习。我们发现,具有稀疏连接的赫布学习实现了双侧对齐,在速度和准确性之间呈现出线性权衡。我们确定了皮层神经元数量与实现所需对齐精度所需的半球间投射密度之间的反比缩放关系,即更多的皮层神经元允许更稀疏的半球间投射。接下来,我们比较了局部赫布法则和人工神经网络的全局随机梯度下降(SGD)学习的对齐性能。我们发现,尽管SGD在连接性稍稀疏的情况下能达到相同的对齐精度,但相同的反比缩放关系仍然成立。我们表明,它们相似的性能源于这样一个事实,即在整个学习过程中,两种学习规则的更新向量显著对齐。这一见解可能会激发针对更复杂问题的高效稀疏局部学习算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7249/11100918/9b3fecdbbb6c/nihpp-2405.03602v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验