Suppr超能文献

拓扑深度学习:代谢功能障碍相关脂肪性肝病胃肠病学的新维度

Topological Deep Learning: A New Dimension in Gastroenterology for Metabolic Dysfunction-Associated Fatty Liver.

作者信息

Singh Yashbir, Ammar Ranya, Shehata Mostafa

机构信息

Radiology, Mayo Clinic, Rochester, USA.

Pediatric Medicine, New Medical Centre Hospital, Abu Dhabi, ARE.

出版信息

Cureus. 2024 May 17;16(5):e60532. doi: 10.7759/cureus.60532. eCollection 2024 May.

Abstract

Topological deep learning (TDL) introduces a novel approach to enhancing diagnostic and monitoring processes for metabolic dysfunction-associated fatty liver disease (MAFLD), a condition that is increasingly prevalent globally and a leading cause of liver transplantation. This editorial explores the integration of topology, a branch of mathematics focused on spatial properties preserved under continuous transformations, with deep learning models to improve the accuracy and efficacy of MAFLD diagnosis and staging from medical imaging. TDL's ability to recognize complex patterns in imaging data that traditional methods might miss can lead to earlier and more precise detection, personalized treatment, and potentially better patient outcomes. Challenges remain, particularly regarding the computational demands and the interpretability of TDL outputs, which necessitate further research and development for clinical application. The potential of TDL to transform the gastroenterological landscape marks a significant step toward the incorporation of advanced mathematical methodologies in medical practice.

摘要

拓扑深度学习(TDL)引入了一种新方法,用于加强代谢功能障碍相关脂肪性肝病(MAFLD)的诊断和监测过程。MAFLD在全球范围内日益普遍,是肝移植的主要原因。这篇社论探讨了拓扑学(数学的一个分支,专注于连续变换下保持的空间特性)与深度学习模型的整合,以提高医学成像中MAFLD诊断和分期的准确性和有效性。TDL识别传统方法可能遗漏的成像数据中复杂模式的能力,可实现更早、更精确的检测、个性化治疗,并可能带来更好的患者预后。挑战依然存在,特别是在计算需求和TDL输出的可解释性方面,这需要进一步的研发以用于临床应用。TDL改变胃肠病学领域的潜力标志着在医学实践中纳入先进数学方法迈出了重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89e7/11101912/4a8d9508f68d/cureus-0016-00000060532-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验