Raghu Alugunuri, Gajjela Nagaraju, Garvandha Mahesh
Research Scholar, Department of Mathematics, School of CS&AI, SR University, Warangal, -506371, Telangana, India.
Department of Mathematics, School of CSE(AIML), SR University, Hanamkonda District, Telangana, PIN 506371, India.
Heliyon. 2024 May 1;10(9):e30355. doi: 10.1016/j.heliyon.2024.e30355. eCollection 2024 May 15.
It might be very important for the polymer processing industries to comprehend how Maxwell fluids behave on a stretched cylinder. Optimizing the extrusion and drawing processes can ensure the desired product qualities while avoiding faults. The objective of this study is heat transfer analysis on a Maxwell dusty fluid flow cylindrical surface with the Cattaneo-Christov concept. We immerse the cylinder in porous media, with a two-dimensional fluid regulating the flow. Our mathematical model further considers the effects of variable thermal conductivity, radiation, viscous and joule heating, magnetic field, thermal stratification, and slip velocity. Based on the presumptions, partial differential equations (PDE's) have been used to evolve the mathematical model. Using similarity transformations, the PDE's for heat and momentum for both phases are transformed into highly nonlinear ODE's.The numerical results have been obtained on these ordinary differential equations by using the RKF-45 method. This issue's main characteristic is that it examines the scenario's liquid and dust phases throughout. Results are given both visually and tabularly for the major parameters over a velocity, temperature, skin friction coefficient, and Nusselt number. When we compared our method to a previously published paper, we discovered a decent match. The findings, which were obtained for our system, show that the velocity and thermal gradient of both the phases of fluid and dust behave in an opposite trend in favor of rising Maxwell parameter, where the curvature parameter makes the rise in the same manner. Furthermore, the thermal transport profiles for both phases decline for the rising thermal time relaxation parameter.
对于聚合物加工行业来说,理解麦克斯韦流体在拉伸圆柱体上的行为可能非常重要。优化挤出和拉伸工艺可以确保所需的产品质量,同时避免出现缺陷。本研究的目的是基于卡塔尼奥 - 克里斯托夫概念对麦克斯韦含尘流体在圆柱形表面上的流动进行传热分析。我们将圆柱体浸没在多孔介质中,由二维流体调节流动。我们的数学模型进一步考虑了可变热导率、辐射、粘性和焦耳热、磁场、热分层以及滑移速度的影响。基于这些假设,使用偏微分方程(PDE)来建立数学模型。通过相似变换,将两相的热和动量的PDE转化为高度非线性的常微分方程(ODE)。使用RKF - 45方法对这些常微分方程进行了数值求解。这个问题的主要特点是它全面研究了该场景中的液相和尘相。给出了速度、温度、表面摩擦系数和努塞尔数等主要参数的直观结果和表格结果。当我们将我们的方法与之前发表的一篇论文进行比较时,发现有很好的匹配度。我们系统得到的结果表明,流体和尘埃两相的速度和热梯度在有利于麦克斯韦参数增加的情况下呈现相反的趋势,而曲率参数以相同的方式增加。此外,随着热时间松弛参数的增加,两相的热传输曲线都下降。