Suppr超能文献

中国江苏省极端温度暴露对居民死亡率的时空分布及滞后效应

Spatiotemporal distribution and lag effect of extreme temperature exposure on mortality of residents in Jiangsu, China.

作者信息

Yang Xu, Wang Junshu, Zhang Guoming, Yu Zhaoyuan

机构信息

Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, Jiangsu, 210023, China.

Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, Jiangsu, 210023, China.

出版信息

Heliyon. 2024 Apr 30;10(9):e30538. doi: 10.1016/j.heliyon.2024.e30538. eCollection 2024 May 15.

Abstract

BACKGROUND

With the ever-increasing occurrence of extreme weather events as a result of global climate change, the impact of extreme temperatures on human health has become a critical area of concern. Specifically, it is imperative to investigate the impact of extreme weather conditions on the health of residents.

METHODS

In this study, we analyze the daily death data from 13 prefecture-level cities in Jiangsu Province from January 2014 to September 2022, using the distributed lag nonlinear model (DLNM) to comprehensively account for factors such as relative humidity, atmospheric pressure, air pollutants, and other factors to evaluate the lag and cumulative effects of extreme low temperature and high temperature on the death of residents across different age groups. Additionally, we utilize the Geographical Detector to analyze the effects of various meteorological and environmental factors on the distribution of resident death in Jiangsu Province. This provides valuable insights that can guide health authorities in decision-making and in the protection of residents.

RESULTS

The experimental results indicate that both extreme low and high temperatures increase the mortality of residents. We observe that the impact of extreme low temperatures has a delayed effect, peaking after 3-5 days and lasting up to 11-21 days. In contrast, the impact of extreme high temperature is greatest on the first day, and lasts only 2-4 days.

CONCLUSION

Both extreme high and low temperatures increase the mortality of residents, with the former being more transient and stronger and the latter being more persistent and slower. Furthermore, residents over 75 years of age are more vulnerable to the effects of extreme temperatures. Finally, we note that the spatial distribution of resident deaths is most closely associated consistent with the spatial distribution of daily mean temperature, and there is significant spatial heterogeneity in deaths among residents in Jiangsu Province.

摘要

背景

随着全球气候变化导致极端天气事件日益频繁发生,极端温度对人类健康的影响已成为一个关键的关注领域。具体而言,调查极端天气状况对居民健康的影响势在必行。

方法

在本研究中,我们分析了2014年1月至2022年9月江苏省13个地级市的每日死亡数据,使用分布滞后非线性模型(DLNM)综合考虑相对湿度、大气压力、空气污染物等因素,以评估极端低温和高温对不同年龄组居民死亡的滞后和累积影响。此外,我们利用地理探测器分析各种气象和环境因素对江苏省居民死亡分布的影响。这为指导卫生当局决策和保护居民提供了有价值的见解。

结果

实验结果表明,极端低温和高温都会增加居民的死亡率。我们观察到,极端低温的影响具有延迟效应,在3 - 5天后达到峰值,持续长达11 - 21天。相比之下,极端高温的影响在第一天最大,仅持续2 - 4天。

结论

极端高温和低温都会增加居民的死亡率,前者更短暂且影响更强,后者更持久且影响更慢。此外,75岁以上的居民更容易受到极端温度的影响。最后,我们注意到居民死亡的空间分布与日平均温度的空间分布最为密切相关,江苏省居民死亡存在显著的空间异质性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验