Rivera-Pousa Alejandro, Otero-Mato José Manuel, Montes-Campos Hadrian, Méndez-Morales Trinidad, Diddens Diddo, Heuer Andreas, Varela Luis Miguel
Grupo de Nanomateriais, Fotónica e Materia Branda, Departamento de Física de Partículas, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain.
Instituto de Materiais (iMATUS), Universidade de Santiago de Compostela, Avenida do Mestre Mateo 25, E-15706 Santiago de Compostela, Spain.
Macromolecules. 2024 Apr 29;57(9):3921-3936. doi: 10.1021/acs.macromol.3c02669. eCollection 2024 May 14.
Polymer-based solid-like gel electrolytes have emerged as a promising alternative to improve battery performance. However, there is a scarcity of studies on the behavior of these media at the electrochemical interface. In this work, we report classical MD simulations of ternary polymer electrolytes composed of poly(ethylene oxide), a lithium salt [lithium bis(trifluoromethanesulfonyl)imide], and different ionic liquids [1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide] confined between two charged and uncharged graphene-like surfaces. The molecular solvation of Li ions and their diffusion as well as the polymer conformational picture were characterized in terms of the radial distribution functions, coordination numbers, number density profiles, orientations, displacement variance, polymer radius of gyration, and polymer end-to-end distance. Our results show that the layering behavior of the ternary electrolyte in the interfacial region leads to a decrease of Li mobility in the direction perpendicular to the electrodes and high energy barriers that hinder lithium cations from coming into direct contact with the graphene-like surface. The nature of the ionic liquid and its concentration were found to influence the structural and dynamic properties at the electrode/electrolyte interface, the electrolyte with low amounts of the pyrrolidinium-based ionic liquid being that with the best performance since it favors the migration of Li cations toward the negative electrode when compared to the imidazolium-based one.
基于聚合物的类固体凝胶电解质已成为改善电池性能的一种有前景的替代方案。然而,关于这些介质在电化学界面行为的研究却很匮乏。在这项工作中,我们报告了由聚环氧乙烷、锂盐[双(三氟甲烷磺酰)亚胺锂]和不同离子液体[1-丁基-1-甲基吡咯烷鎓双(三氟甲烷磺酰)亚胺和1-乙基-3-甲基咪唑鎓双(三氟甲烷磺酰)亚胺]组成的三元聚合物电解质在两个带电和不带电的类石墨烯表面之间受限的经典分子动力学模拟。通过径向分布函数、配位数、数密度分布、取向、位移方差、聚合物回转半径和聚合物端到端距离等对锂离子的分子溶剂化及其扩散以及聚合物构象情况进行了表征。我们的结果表明,三元电解质在界面区域的分层行为导致锂离子在垂直于电极方向上的迁移率降低以及存在阻碍锂阳离子与类石墨烯表面直接接触的高能垒。发现离子液体的性质及其浓度会影响电极/电解质界面处的结构和动力学性质,与基于咪唑鎓的离子液体相比,含有少量基于吡咯烷鎓的离子液体的电解质具有最佳性能,因为它有利于锂阳离子向负极迁移。