Suppr超能文献

二苯基支架与PED/PEA15之间的分子相互作用:对靶向PED/PEA15 - 磷脂酶D1相互作用的II型糖尿病治疗的意义。

Molecular interactions between a diphenyl scaffold and PED/PEA15: Implications for type II diabetes therapeutics targeting PED/PEA15 - Phospholipase D1 interaction.

作者信息

Mercurio Ivan, D'Abrosca Gianluca, Della Valle Maria, Malgieri Gaetano, Fattorusso Roberto, Isernia Carla, Russo Luigi, Di Gaetano Sonia, Pedone Emilia Maria, Pirone Luciano, Del Gatto Annarita, Zaccaro Laura, Alberga Domenico, Saviano Michele, Mangiatordi Giuseppe Felice

机构信息

Institute of Crystallography, CNR, Via Amendola 122/o, 70126 Bari, Italy.

Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy.

出版信息

Comput Struct Biotechnol J. 2024 May 4;23:2001-2010. doi: 10.1016/j.csbj.2024.04.063. eCollection 2024 Dec.

Abstract

In a recent study, we have identified BPH03 as a promising scaffold for the development of compounds aimed at modulating the interaction between PED/PEA15 (Phosphoprotein Enriched in Diabetes/Phosphoprotein Enriched in Astrocytes 15) and PLD1 (phospholipase D1), with potential applications in type II diabetes therapy. PED/PEA15 is known to be overexpressed in certain forms of diabetes, where it binds to PLD1, thereby reducing insulin-stimulated glucose transport. The inhibition of this interaction reestablishes basal glucose transport, indicating PED as a potential target of ligands capable to recover glucose tolerance and insulin sensitivity. In this study, we employ computational methods to provide a detailed description of BPH03 interaction with PED, evidencing the presence of a hidden druggable pocket within its PLD1 binding surface. We also elucidate the conformational changes that occur during PED interaction with BPH03. Moreover, we report new NMR data supporting the in-silico findings and indicating that BPH03 disrupts the PED/PLD1 interface displacing PLD1 from its interaction with PED. Our study represents a significant advancement toward the development of potential therapeutics for the treatment of type II diabetes.

摘要

在最近的一项研究中,我们已确定BPH03是一种有前景的支架,可用于开发旨在调节PED/PEA15(糖尿病富集磷蛋白/星形胶质细胞富集磷蛋白15)与PLD1(磷脂酶D1)之间相互作用的化合物,在II型糖尿病治疗中具有潜在应用。已知PED/PEA15在某些形式的糖尿病中过表达,它与PLD1结合,从而减少胰岛素刺激的葡萄糖转运。抑制这种相互作用可重新建立基础葡萄糖转运,表明PED是能够恢复葡萄糖耐量和胰岛素敏感性的配体的潜在靶点。在本研究中,我们采用计算方法详细描述BPH03与PED的相互作用,证明其PLD1结合表面存在一个隐藏的可成药口袋。我们还阐明了PED与BPH03相互作用过程中发生的构象变化。此外,我们报告了新的核磁共振数据,支持计算机模拟结果,并表明BPH03破坏了PED/PLD1界面,使PLD1从其与PED的相互作用中解离。我们的研究代表了在开发治疗II型糖尿病的潜在疗法方面的重大进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52cd/11103223/bbe140fe1498/ga1.jpg

相似文献

2
Screening a Molecular Fragment Library to Modulate the PED/PEA15-Phospholipase D1 Interaction in Cellular Lysate Environments.
ACS Chem Biol. 2021 Dec 17;16(12):2798-2807. doi: 10.1021/acschembio.1c00688. Epub 2021 Nov 26.
3
Residues 762-801 of PLD1 mediate the interaction with PED/PEA15.
Mol Biosyst. 2010 Oct;6(10):2039-48. doi: 10.1039/c005272h. Epub 2010 Aug 11.
5
Molecular basis of the PED/PEA15 interaction with the C-terminal fragment of phospholipase D1 revealed by NMR spectroscopy.
Biochim Biophys Acta. 2013 Aug;1834(8):1572-80. doi: 10.1016/j.bbapap.2013.04.012. Epub 2013 Apr 19.
6
Targeting of PED/PEA-15 molecular interaction with phospholipase D1 enhances insulin sensitivity in skeletal muscle cells.
J Biol Chem. 2008 Aug 1;283(31):21769-78. doi: 10.1074/jbc.M803771200. Epub 2008 Jun 9.
7
Expression and purification of the D4 region of PLD1 and characterization of its interaction with PED-PEA15.
Protein Expr Purif. 2008 Jun;59(2):302-8. doi: 10.1016/j.pep.2008.02.012. Epub 2008 Feb 29.
9
Discovery of small peptide antagonists of PED/PEA15-D4α interaction from simplified combinatorial libraries.
Chem Biol Drug Des. 2011 May;77(5):319-27. doi: 10.1111/j.1747-0285.2011.01094.x. Epub 2011 Mar 1.
10

本文引用的文献

2
Screening a Molecular Fragment Library to Modulate the PED/PEA15-Phospholipase D1 Interaction in Cellular Lysate Environments.
ACS Chem Biol. 2021 Dec 17;16(12):2798-2807. doi: 10.1021/acschembio.1c00688. Epub 2021 Nov 26.
3
Efficient Exploration of Chemical Space with Docking and Deep Learning.
J Chem Theory Comput. 2021 Nov 9;17(11):7106-7119. doi: 10.1021/acs.jctc.1c00810. Epub 2021 Sep 30.
4
OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space.
J Chem Theory Comput. 2021 Jul 13;17(7):4291-4300. doi: 10.1021/acs.jctc.1c00302. Epub 2021 Jun 7.
6
Targetting PED/PEA-15 for diabetes treatment.
Expert Opin Ther Targets. 2017 Jun;21(6):571-581. doi: 10.1080/14728222.2017.1317749. Epub 2017 Apr 21.
8
The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities.
Expert Opin Drug Discov. 2015 May;10(5):449-61. doi: 10.1517/17460441.2015.1032936. Epub 2015 Apr 2.
9
NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy.
Bioinformatics. 2015 Apr 15;31(8):1325-7. doi: 10.1093/bioinformatics/btu830. Epub 2014 Dec 12.
10
Using chemical shift perturbation to characterise ligand binding.
Prog Nucl Magn Reson Spectrosc. 2013 Aug;73:1-16. doi: 10.1016/j.pnmrs.2013.02.001. Epub 2013 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验