Department of Medicine, Division of Pulmonary, Allergy and Critical Care (K.I., M.B., A.M.A., K.S., Y.M., T.Z., X.T., R.V., W.T., M.R.N., E.S.).
Cardiovascular Institute (K.I., K.S., S.R., M.R.N., S.Y., Y.S., J.W.M., Y.J.W., E.S.).
Circ Res. 2024 Jun 21;135(1):60-75. doi: 10.1161/CIRCRESAHA.123.323546. Epub 2024 May 21.
Pathogenic concepts of right ventricular (RV) failure in pulmonary arterial hypertension focus on a critical loss of microvasculature. However, the methods underpinning prior studies did not take into account the 3-dimensional (3D) aspects of cardiac tissue, making accurate quantification difficult. We applied deep-tissue imaging to the pressure-overloaded RV to uncover the 3D properties of the microvascular network and determine whether deficient microvascular adaptation contributes to RV failure.
Heart sections measuring 250-µm-thick were obtained from mice after pulmonary artery banding (PAB) or debanding PAB surgery and properties of the RV microvascular network were assessed using 3D imaging and quantification. Human heart tissues harvested at the time of transplantation from pulmonary arterial hypertension cases were compared with tissues from control cases with normal RV function.
Longitudinal 3D assessment of PAB mouse hearts uncovered complex microvascular remodeling characterized by tortuous, shorter, thicker, highly branched vessels, and overall preserved microvascular density. This remodeling process was reversible in debanding PAB mice in which the RV function recovers over time. The remodeled microvasculature tightly wrapped around the hypertrophied cardiomyocytes to maintain a stable contact surface to cardiomyocytes as an adaptation to RV pressure overload, even in end-stage RV failure. However, microvasculature-cardiomyocyte contact was impaired in areas with interstitial fibrosis where cardiomyocytes displayed signs of hypoxia. Similar to PAB animals, microvascular density in the RV was preserved in patients with end-stage pulmonary arterial hypertension, and microvascular architectural changes appeared to vary by etiology, with patients with pulmonary veno-occlusive disease displaying a lack of microvascular complexity with uniformly short segments.
3D deep tissue imaging of the failing RV in PAB mice, pulmonary hypertension rats, and patients with pulmonary arterial hypertension reveals complex microvascular changes to preserve the microvascular density and maintain a stable microvascular-cardiomyocyte contact. Our studies provide a novel framework to understand microvascular adaptation in the pressure-overloaded RV that focuses on cell-cell interaction and goes beyond the concept of capillary rarefaction.
肺动脉高压中右心室(RV)衰竭的致病概念侧重于微血管的严重丧失。然而,先前研究的方法并未考虑心脏组织的三维(3D)方面,这使得准确量化变得困难。我们将深层组织成像应用于压力超负荷的 RV,以揭示微血管网络的 3D 特性,并确定微血管适应不良是否导致 RV 衰竭。
在肺动脉结扎(PAB)或 PAB 手术后,从小鼠中获取厚度为 250μm 的心脏切片,并使用 3D 成像和定量评估 RV 微血管网络的特性。将从肺动脉高压病例移植时采集的人类心脏组织与来自 RV 功能正常的对照病例的组织进行比较。
对 PAB 小鼠心脏的纵向 3D 评估揭示了复杂的微血管重塑,其特征为迂曲、更短、更厚、高度分支的血管,以及整体保持微血管密度。在 PAB 去结扎小鼠中,RV 功能随时间恢复,这种重塑过程是可逆的。重塑的微血管紧紧缠绕在肥大的心肌细胞周围,以维持与心肌细胞的稳定接触表面,作为对 RV 压力超负荷的适应,即使在 RV 衰竭的终末期也是如此。然而,在存在间质纤维化的区域,微血管-心肌细胞接触受损,其中心肌细胞显示出缺氧的迹象。与 PAB 动物相似,终末期肺动脉高压患者的 RV 中微血管密度得以保留,并且微血管结构变化似乎因病因而异,患有肺静脉闭塞性疾病的患者显示出缺乏微血管复杂性,其微血管段均较短。
对 PAB 小鼠、肺动脉高压大鼠和肺动脉高压患者衰竭的 RV 进行 3D 深层组织成像揭示了复杂的微血管变化,以保持微血管密度并维持稳定的微血管-心肌细胞接触。我们的研究提供了一种新的框架来理解压力超负荷 RV 中的微血管适应,该框架侧重于细胞-细胞相互作用,超越了毛细血管稀疏的概念。