Suppr超能文献

推进光趋性行为反应研究数据的统计处理。

Advancing statistical treatment of photolocomotor behavioral response study data.

机构信息

Department of Statistical Science, Baylor University, Waco, TX, United States of America.

Department of Environmental Science, Baylor University, Waco, TX, United States of America.

出版信息

PLoS One. 2024 May 21;19(5):e0300636. doi: 10.1371/journal.pone.0300636. eCollection 2024.

Abstract

Fish photolocomotor behavioral response (PBR) studies have become increasingly prevalent in pharmacological and toxicological research to assess the environmental impact of various chemicals. There is a need for a standard, reliable statistical method to analyze PBR data. The most common method currently used, univariate analysis of variance (ANOVA), does not account for temporal dependence in observations and leads to incomplete or unreliable conclusions. Repeated measures ANOVA, another commonly used method, has drawbacks in its interpretability for PBR study data. Because each observation is collected continuously over time, we instead consider each observation to be a function and apply functional ANOVA (FANOVA) to PBR data. Using the functional approach not only accounts for temporal dependency but also retains the full structure of the data and allows for straightforward interpretation in any subregion of the domain. Unlike the traditional univariate and repeated measures ANOVA, the FANOVA that we propose is nonparametric, requiring minimal assumptions. We demonstrate the disadvantages of univariate and repeated measures ANOVA using simulated data and show how they are overcome by applying FANOVA. We then apply one-way FANOVA to zebrafish data from a PBR study and discuss how those results can be reproduced for future PBR studies.

摘要

鱼类光运动行为反应(PBR)研究在药理学和毒理学研究中越来越普遍,用于评估各种化学物质对环境的影响。需要一种标准的、可靠的统计方法来分析 PBR 数据。目前最常用的方法是单变量方差分析(ANOVA),但它没有考虑到观测值的时间依赖性,导致结论不完整或不可靠。另一种常用的方法是重复测量 ANOVA,但它在 PBR 研究数据的可解释性方面存在缺陷。由于每个观测值是连续随时间采集的,因此我们将每个观测值视为一个函数,并将功能方差分析(FANOVA)应用于 PBR 数据。使用功能方法不仅考虑了时间依赖性,还保留了数据的全部结构,并允许在域的任何子区域进行直接解释。与传统的单变量和重复测量 ANOVA 不同,我们提出的 FANOVA 是非参数的,仅需要最小的假设。我们使用模拟数据展示了单变量和重复测量 ANOVA 的缺点,并展示了如何通过应用 FANOVA 来克服这些缺点。然后,我们将单向 FANOVA 应用于 PBR 研究中的斑马鱼数据,并讨论如何为未来的 PBR 研究重现这些结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b599/11108188/ffa56b2d25ab/pone.0300636.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验