Saha Soham, Maity Dipanjan, De Debasis, Khan Gobinda Gopal, Mandal Kalyan
Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata, West Bengal 700 106, India.
Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560 064, India.
ACS Appl Mater Interfaces. 2024 Jun 5;16(22):28441-28451. doi: 10.1021/acsami.4c02723. Epub 2024 May 21.
Despite the narrow band gap energy, the performance of zinc ferrite (ZnFeO) as a photoharvester for solar-driven water splitting is significantly hindered due to its sluggish charge transfer and severe charge recombination. This work reports the fabrication of a hybrid nanostructured hydrogenated ZnFeO (ZFO) photoanode with enhanced photoelectrochemical water-oxidation activity through coupling N-doped graphene quantum dots (GQDs) as a hole transfer layer and Co-Pi as a catalyst. The GQDs not only reduce the surface-mediated nonradiative electron-hole pair recombination but also induce a built-in interfacial electric field leading to a favorable band alignment at the ZFO/GQDs interface, helping rapid photogenerated hole separation and serving as a conducting hole transfer highway, improve the hole transportation into the Co-Pi catalyst for enhanced water oxidation reaction kinetics. The optimized ZFO/GQD/Co-Pi hybrid photoanode delivers a 23-fold photocurrent enhancement at 1.23 V versus the reversible hydrogen electrode (RHE) and a significant 360 mV reduction in the onset potential, reaching 0.65 compared with the ZFO photoanode under 1 sun illumination in a neutral electrolytic environment. This investigation underscores the mechanism of synergistic interplay between the hole transport layer and cocatalyst in boosting the solar-illuminated water-splitting activity of the ZFO photoanode.
尽管铁酸锌(ZnFeO)的带隙能量较窄,但其作为太阳能驱动水分解的光捕获剂的性能因电荷转移缓慢和严重的电荷复合而受到显著阻碍。本工作报道了通过耦合作为空穴传输层的N掺杂石墨烯量子点(GQDs)和作为催化剂的Co-Pi,制备出具有增强光电化学水氧化活性的混合纳米结构氢化ZnFeO(ZFO)光阳极。GQDs不仅减少了表面介导的非辐射电子-空穴对复合,还诱导了一个内置的界面电场,导致在ZFO/GQDs界面处形成有利的能带排列,有助于快速光生空穴分离,并作为导电空穴传输通道,改善空穴向Co-Pi催化剂的传输,以增强水氧化反应动力学。优化后的ZFO/GQD/Co-Pi混合光阳极在相对于可逆氢电极(RHE)为1.23 V时,光电流增强了23倍,起始电位显著降低了360 mV,在中性电解环境中1个太阳光照下,与ZFO光阳极相比达到了0.65 V。本研究强调了空穴传输层和助催化剂之间协同相互作用在提高ZFO光阳极太阳能驱动水分解活性方面的机制。