Suppr超能文献

仿蚊拍动翼微型飞行器的准稳态空气动力学建模与动态稳定性

Quasi-steady aerodynamic modeling and dynamic stability of mosquito-inspired flapping wing pico aerial vehicle.

作者信息

Singh Balbir, Ahmad Kamarul Arifin, Murugaiah Manikandan, Yidris Noorfaizal, Basri Adi Azriff, Pai Raghuvir

机构信息

Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.

Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia.

出版信息

Front Robot AI. 2024 May 7;11:1362206. doi: 10.3389/frobt.2024.1362206. eCollection 2024.

Abstract

Recent exploration in insect-inspired robotics has generated considerable interest. Among insects navigating at low Reynolds numbers, mosquitoes exhibit distinct flight characteristics, including higher wingbeat frequencies, reduced stroke amplitudes, and slender wings. This leads to unique aerodynamic traits such as trailing edge vortices wake capture, diminished reliance on leading vortices, and rotational drag. This paper shows the energetic analysis of a mosquito-inspired flapping-wing Pico aerial vehicle during hovering, contributing insights to its future design and fabrication. The investigation relies on kinematic and quasi-steady aerodynamic modeling of a symmetric flapping-wing model with a wingspan of approximately 26 mm, considering translational, rotational, and wake capture force components. The control strategy adapts existing bird flapping wing approaches to accommodate insect wing kinematics and aerodynamic features. Flight controller design is grounded in understanding the impact of kinematics on wing forces. Additionally, a thorough analysis of the dynamic stability of the mosquito-inspired PAV model is conducted, revealing favorable controller response and maneuverability at a small scale. The modified model, incorporating rigid body dynamics and non-averaged aerodynamics, exhibits weak stability without a controller or sufficient power density. However, the controller effectively stabilizes the PAV model, addressing attitude and maneuverability. These preliminary findings offer valuable insights for the mechanical design, aerodynamics, and fabrication of RoboMos, an insect-inspired flapping wing pico aerial vehicle developed at UPM Malaysia.

摘要

近期在受昆虫启发的机器人技术方面的探索引发了广泛关注。在低雷诺数下飞行的昆虫中,蚊子展现出独特的飞行特性,包括更高的翅膀拍动频率、更小的冲程幅度以及细长的翅膀。这导致了诸如后缘涡旋、尾流捕获、对前缘涡旋的依赖减少以及旋转阻力等独特的空气动力学特征。本文展示了对一款受蚊子启发的扑翼微型飞行器悬停时的能量分析,为其未来的设计和制造提供了见解。该研究依赖于一个翼展约为26毫米的对称扑翼模型的运动学和准稳态空气动力学建模,考虑了平移、旋转和尾流捕获力分量。控制策略采用了现有的鸟类扑翼方法,以适应昆虫翅膀的运动学和空气动力学特征。飞行控制器的设计基于对运动学对翅膀力影响的理解。此外,还对受蚊子启发的微型飞行器模型的动态稳定性进行了深入分析,结果表明在小尺度下具有良好的控制器响应和机动性。包含刚体动力学和非平均空气动力学的改进模型,在没有控制器或足够功率密度的情况下表现出较弱的稳定性。然而,控制器有效地稳定了微型飞行器模型,解决了姿态和机动性问题。这些初步研究结果为马来西亚博特拉大学研发的受蚊子启发的扑翼微型飞行器RoboMos的机械设计、空气动力学和制造提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d748/11107296/1b692dd49657/frobt-11-1362206-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验