Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and.
Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
JCI Insight. 2024 May 22;9(10):e167598. doi: 10.1172/jci.insight.167598.
MAPK activating death domain (MADD) is a multifunctional protein regulating small GTPases RAB3 and RAB27, MAPK signaling, and cell survival. Polymorphisms in the MADD locus are associated with glycemic traits, but patients with biallelic variants in MADD manifest a complex syndrome affecting nervous, endocrine, exocrine, and hematological systems. We identified a homozygous splice site variant in MADD in 2 siblings with developmental delay, diabetes, congenital hypogonadotropic hypogonadism, and growth hormone deficiency. This variant led to skipping of exon 30 and in-frame deletion of 36 amino acids. To elucidate how this mutation causes pleiotropic endocrine phenotypes, we generated relevant cellular models with deletion of MADD exon 30 (dex30). We observed reduced numbers of β cells, decreased insulin content, and increased proinsulin-to-insulin ratio in dex30 human embryonic stem cell-derived pancreatic islets. Concordantly, dex30 led to decreased insulin expression in human β cell line EndoC-βH1. Furthermore, dex30 resulted in decreased luteinizing hormone expression in mouse pituitary gonadotrope cell line LβT2 but did not affect ontogeny of stem cell-derived GnRH neurons. Protein-protein interactions of wild-type and dex30 MADD revealed changes affecting multiple signaling pathways, while the GDP/GTP exchange activity of dex30 MADD remained intact. Our results suggest MADD-specific processes regulate hormone expression in pancreatic β cells and pituitary gonadotropes.
MAPK 激活死亡结构域(MADD)是一种多功能蛋白,可调节 RAB3 和 RAB27 小 GTPases、MAPK 信号转导和细胞存活。MADD 基因座的多态性与血糖特征相关,但具有 MADD 双等位基因变异的患者表现出影响神经、内分泌、外分泌和血液系统的复杂综合征。我们在 2 名有发育迟缓、糖尿病、先天性促性腺激素缺乏性性腺功能减退和生长激素缺乏的兄弟姐妹中发现了 MADD 中的纯合剪接位点变异。该变异导致外显子 30 跳跃和 36 个氨基酸的框内缺失。为了阐明该突变如何导致多效性内分泌表型,我们使用 MADD 外显子 30 缺失(dex30)生成了相关的细胞模型。我们观察到 dex30 人胚胎干细胞衍生的胰岛中β细胞数量减少、胰岛素含量降低和前胰岛素与胰岛素的比值增加。一致地,dex30 导致人β细胞系 EndoC-βH1 中胰岛素表达减少。此外,dex30 导致小鼠垂体促性腺细胞系 LβT2 中黄体生成素表达减少,但不影响干细胞衍生 GnRH 神经元的发生。野生型和 dex30 MADD 的蛋白-蛋白相互作用显示出影响多种信号通路的变化,而 dex30 MADD 的 GDP/GTP 交换活性保持完整。我们的结果表明,MADD 特异性过程调节胰腺β细胞和垂体促性腺细胞中的激素表达。