Suppr超能文献

对多社会风险评分方法的批判与检验:预测健康与退休研究中的认知能力。

A critique and examination of the polysocial risk score approach: predicting cognition in the Health and Retirement Study.

机构信息

Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, United States.

Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, CA 94158, United States.

出版信息

Am J Epidemiol. 2024 Sep 3;193(9):1296-1300. doi: 10.1093/aje/kwae074.

Abstract

Polysocial risk scores were recently proposed as a strategy for improving the clinical relevance of knowledge about social determinants of health. Our objective in this study was to assess whether the polysocial risk score model improves prediction of cognition and all-cause mortality in middle-aged and older adults beyond simpler models including a smaller set of key social determinants of health. We used a sample of 13 773 individuals aged ≥50 years at baseline from the 2006-2018 waves of the Health and Retirement Study, a US population-based longitudinal cohort study. Four linear mixed models were compared: 2 simple models including a priori-selected covariates and 2 polysocial risk score models which used least absolute shrinkage and selection operator (LASSO) regularization to select covariates among 9 or 21 candidate social predictors. All models included age. Predictive accuracy was assessed via R2 and root mean-squared prediction error (RMSPE) using training/test split validation and cross-validation. For predicting cognition, the simple model including age, race, sex, and education had an R2 value of 0.31 and an RMSPE of 0.880. Compared with this, the most complex polysocial risk score selected 12 predictors (R2 = 0.35 and RMSPE = 0.858; 2.2% improvement). For all-cause mortality, the simple model including age, race, sex, and education had an area under the receiver operating characteristic curve (AUROC) of 0.747, while the most complex polysocial risk score did not demonstrate improved performance (AUROC = 0.745). Models built on a smaller set of key social determinants performed comparably to models built on a more complex set of social "risk factors."

摘要

多社会风险评分最近被提出作为一种提高健康社会决定因素知识临床相关性的策略。我们的研究目的是评估多社会风险评分模型是否能够改善对认知和全因死亡率的预测,超越包括较小的一组健康社会决定因素的更简单模型。我们使用了 2006-2018 年美国人口纵向队列研究健康与退休研究中基线时年龄≥50 岁的 13773 名个体的样本。比较了 4 个线性混合模型:2 个简单模型包括了先验选择的协变量,2 个多社会风险评分模型使用最小绝对收缩和选择算子(LASSO)正则化来选择 9 个或 21 个候选社会预测因素中的协变量。所有模型均包括年龄。通过训练/测试拆分验证和交叉验证,使用 R2 和均方根预测误差(RMSPE)评估预测准确性。对于预测认知,包括年龄、种族、性别和教育的简单模型的 R2 值为 0.31,RMSPE 为 0.880。与该模型相比,最复杂的多社会风险评分选择了 12 个预测因素(R2=0.35,RMSPE=0.858;提高了 2.2%)。对于全因死亡率,包括年龄、种族、性别和教育的简单模型的接收者操作特征曲线下面积(AUROC)为 0.747,而最复杂的多社会风险评分并未显示出性能的改善(AUROC=0.745)。基于较小的一组关键社会决定因素构建的模型与基于更复杂的一组社会“风险因素”构建的模型表现相当。

相似文献

本文引用的文献

7
Measuring health disparities using a continuous social risk factor.使用连续的社会风险因素衡量健康差距。
Health Serv Res. 2023 Feb;58(1):30-39. doi: 10.1111/1475-6773.14048. Epub 2022 Sep 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验