Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States.
Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria.
Anal Chem. 2024 Jun 4;96(22):8868-8874. doi: 10.1021/acs.analchem.4c00056. Epub 2024 May 22.
Experimental methods to determine transition temperatures for individual base pair melting events in DNA duplexes are lacking despite intense interest in these thermodynamic parameters. Here, we determine the dimensions of the thymine (T) C2═O stretching vibration when it is within the DNA duplex via isotopic substitutions at other atomic positions in the structure. First, we determined that this stretching state was localized enough to specific atoms in the molecule to make submolecular scale measurements of local structure and stability in high molecular weight complexes. Next, we develop a new isotope-edited variable temperature infrared method to measure melting transitions at various locations in a DNA structure. As an initial test of this "sub-molecular scale thermometer", we applied our TC2 difference infrared signal to measure location-dependent melting temperatures (Tm) in a DNA duplex via variable temperature attenuated total reflectance Fourier transform infrared (VT-ATR-FTIR) spectroscopy. We report that the Tm of a single Watson-Crick A-T base pair near the end of an A-T rich sequence (poly T) is ∼34.9 ± 0.7°C. This is slightly lower than the Tm of a single base pair near the middle position of the poly T sequence (Tm ∼35.6±0.2°C). In addition, we also report that the Tm of a single Watson-Crick A-T base pair near the end of a 50% G-C sequence (12-mer) is ∼52.5 ± 0.3°C, which is slightly lower than the global melting Tm of the 12-mer sequence (Tm ∼54.0±0.9°C). Our results provide direct physical evidence for end fraying in DNA sequences with our novel spectroscopic methods.
尽管人们对这些热力学参数非常感兴趣,但缺乏确定 DNA 双链体中单个碱基对熔解事件转变温度的实验方法。在这里,我们通过在结构中的其他原子位置进行同位素取代,确定胸腺嘧啶(T)C2═O 伸缩振动在 DNA 双链体中的尺寸。首先,我们确定这种伸缩状态足以定位到分子中的特定原子,从而可以对高分子量复合物中的局部结构和稳定性进行亚分子尺度的测量。接下来,我们开发了一种新的同位素编辑变温红外方法来测量 DNA 结构中各个位置的熔解转变。作为这种“亚分子尺度温度计”的初步测试,我们通过变温衰减全反射傅里叶变换红外(VT-ATR-FTIR)光谱法将我们的 TC2 差红外信号应用于测量 DNA 双链体中位置依赖的熔解温度(Tm)。我们报告说,在富含 A-T 的序列(多 T)末端附近的单个 Watson-Crick A-T 碱基对的 Tm 约为 34.9±0.7°C。这略低于多 T 序列中间位置附近单个碱基对的 Tm(Tm ∼35.6±0.2°C)。此外,我们还报告说,在 50%G-C 序列(12 -mer)末端附近的单个 Watson-Crick A-T 碱基对的 Tm 约为 52.5±0.3°C,略低于 12-mer 序列的整体熔解 Tm(Tm ∼54.0±0.9°C)。我们的结果为我们的新型光谱方法提供了 DNA 序列末端磨损的直接物理证据。