Plum G E, Park Y W, Singleton S F, Dervan P B, Breslauer K J
Department of Chemistry, Rutgers, State University of New Jersey, New Brunswick 08903.
Proc Natl Acad Sci U S A. 1990 Dec;87(23):9436-40. doi: 10.1073/pnas.87.23.9436.
We report a complete thermodynamic characterization of the stability and the melting behavior of an oligomeric DNA triplex. The triplex chosen for study forms by way of major-groove Hoogsteen association of an all-pyrimidine 15-mer single strand (termed y15) with a Watson-Crick 21-mer duplex composed of one purine-rich strand (termed u21) and one pyrimidine-rich strand (termed y21). We find that the near-UV CD spectrum of the triplex can be duplicated by the addition of the B-like CD spectrum of the isolated 21-mer duplex and the CD spectrum of the 15-mer single strand. Spectroscopic and calorimetric measurements show that the triplex (y15.u21.y21) melts by two well-resolved sequential transitions. The first transition (melting temperature, Tm, approximately 30 degrees C) is pH-dependent and involves the thermal expulsion of the 15-mer strand to form the free duplex u21.y21 and the free single strand y15. The second transition (Tm approximately 65 degrees C) is pH-independent between pH 6 and 7 and reflects the thermal disruption of the u21.y21 Watson-Crick duplex to form the component single strands. The thermal stability of the y15.u21.y21 triplex increases with increasing Na+ concentration but is nearly independent of DNA strand concentration. Differential scanning calorimetric measurements at pH 6.5 show the triplex to be enthalpically stabilized by only 2.0 +/- 0.1 kcal/mol of base triplets (1 cal = 4.184 J), whereas the duplex is stabilized by 6.3 +/- 0.3 kcal/mol of base pairs. From the calorimetric data, we calculate that at 25 degrees C the y15.u21.y21 triplex is stabilized by a free energy of only 1.3 +/- 0.1 kcal/mol relative to its component u21.y21 duplex and y15 single strand, whereas the 21-mer duplex is stabilized by a free energy of 17.2 +/- 1.2 kcal/mol relative to its component single strands. The y15 single strand modified by methylation of cytosine at the C-5 position forms a triplex with the u21.y21 duplex, which exhibits enhanced thermal stability. The spectroscopic and calorimetric data reported here provide a quantitative measure of the influence of salt, temperature, pH, strand concentration, and base modification on the stability and the melting behavior of a DNA triplex. Such information should prove useful in designing third-strand oligonucleotides and in defining solution conditions for the effective use of triplex structure formation as a tool for modulating biochemical events.
我们报告了一种寡聚DNA三链体稳定性和熔解行为的完整热力学表征。用于研究的三链体通过一条全嘧啶15聚体单链(称为y15)与由一条富含嘌呤链(称为u21)和一条富含嘧啶链(称为y21)组成的沃森-克里克21聚体双链体通过大沟Hoogsteen缔合形成。我们发现,通过添加分离的21聚体双链体的B型圆二色光谱和15聚体单链的圆二色光谱,可以重现三链体的近紫外圆二色光谱。光谱和量热测量表明,三链体(y15.u21.y21)通过两个分辨率良好的连续转变而熔解。第一个转变(熔解温度,Tm,约30℃)依赖于pH值,涉及15聚体链的热排出,形成游离双链体u21.y21和游离单链y15。第二个转变(Tm约65℃)在pH 6至7之间不依赖于pH值,反映了u21.y21沃森-克里克双链体的热破坏,形成组成单链。y15.u21.y21三链体的热稳定性随Na+浓度的增加而增加,但几乎与DNA链浓度无关。在pH 6.5下的差示扫描量热测量表明,三链体仅通过2.0±0.1千卡/摩尔的碱基三联体在焓上得到稳定(1卡 = 4.184焦耳),而双链体通过6.3±0.3千卡/摩尔的碱基对得到稳定。根据量热数据,我们计算出在25℃时,y15.u21.y21三链体相对于其组成的u21.y21双链体和y15单链仅通过1.3±0.1千卡/摩尔的自由能得到稳定,而21聚体双链体相对于其组成单链通过17.2±1.2千卡/摩尔的自由能得到稳定。在C-5位置的胞嘧啶甲基化修饰的y15单链与u21.y21双链体形成三链体,其表现出增强的热稳定性。这里报道的光谱和量热数据提供了盐、温度、pH值、链浓度和碱基修饰对DNA三链体稳定性和熔解行为影响的定量测量。这些信息在设计第三链寡核苷酸以及确定将三链体结构形成作为调节生化事件工具的有效使用的溶液条件方面应该是有用的。