Suppr超能文献

氮掺杂碳上的铁单体或三聚体:哪种更有利于电催化氮还原反应?

Iron Monomers or Trimers on Nitrogen-Doped Carbon: Which Is Better for the Electrocatalytic Nitrogen Reduction Reaction?

作者信息

Yang Rui, Gao Denglei, Li Wei, Lu Fei, Yi Ding, Yang Yongan, Wang Xi

机构信息

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, P. R. China.

Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2024 Jun 5;16(22):28452-28460. doi: 10.1021/acsami.4c02716. Epub 2024 May 22.

Abstract

The electrocatalytic nitrogen reduction reaction (NRR) presents an alternative method for the Haber-Bosch process, and single-atom catalysts (SACs) to achieve efficient NRR have attracted considerable attention in the past decades. However, whether SACs are more suitable for NRR compared to atomic-cluster catalysts (ACCs) remains to be studied. Herein, we have successfully synthesized both the Fe monomers (Fe) and trimers (Fe) on nitrogen-doped carbon catalysts. Both the experiments and DFT calculations indicate that compared to the end-on adsorption of N on Fe catalysts, N activation is enhanced via the side-on adsorption on Fe catalysts, and the reaction follows the enzymatic pathway with a reduced free energy barrier for NRR. As a result, the Fe catalysts achieved better NRR performance (NH yield rate of 27.89 μg h mg and Faradaic efficiency of 45.13%) than Fe catalysts (10.98 μg h mg and 20.98%). Therefore, our research presents guidance to prepare more efficient NRR catalysts.

摘要

电催化氮还原反应(NRR)为哈伯-博施法提供了一种替代方法,在过去几十年中,用于实现高效NRR的单原子催化剂(SAC)引起了广泛关注。然而,与原子簇催化剂(ACC)相比,SAC是否更适合NRR仍有待研究。在此,我们成功地在氮掺杂碳催化剂上合成了铁单体(Fe)和三聚体(Fe)。实验和密度泛函理论计算均表明,与N在Fe催化剂上的端基吸附相比,N在Fe催化剂上的侧基吸附增强了N的活化,并且该反应遵循酶促途径,具有降低的NRR自由能垒。结果,Fe催化剂比Fe催化剂表现出更好的NRR性能(NH产率为27.89 μg h mg,法拉第效率为45.13%)(10.98 μg h mg和20.98%)。因此,我们的研究为制备更高效的NRR催化剂提供了指导。

相似文献

9
Atomically Dispersed Molybdenum Catalysts for Efficient Ambient Nitrogen Fixation.用于高效常温固氮的原子级分散钼催化剂
Angew Chem Int Ed Engl. 2019 Feb 18;58(8):2321-2325. doi: 10.1002/anie.201811728. Epub 2019 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验