Zhong Haixia, Wang Mingchao, Ghorbani-Asl Mahdi, Zhang Jichao, Ly Khoa Hoang, Liao Zhongquan, Chen Guangbo, Wei Yidan, Biswal Bishnu P, Zschech Ehrenfried, Weidinger Inez M, Krasheninnikov Arkady V, Dong Renhao, Feng Xinliang
Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstr. 400, 01328 Dresden, Germany.
Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204 Shanghai, China.
J Am Chem Soc. 2021 Dec 1;143(47):19992-20000. doi: 10.1021/jacs.1c11158. Epub 2021 Nov 16.
The electrochemical N reduction reaction (NRR) under ambient conditions is attractive in replacing the current Haber-Bosch process toward sustainable ammonia production. Metal-heteroatom-doped carbon-rich materials have emerged as the most promising NRR electrocatalysts. However, simultaneously boosting their NRR activity and selectivity remains a grand challenge, while the principle for precisely tailoring the active sites has been elusive. Herein, we report the first case of crystalline two-dimensional conjugated covalent organic frameworks (2D COFs) incorporated with M-N-C centers as novel, defined, and effective catalysts, achieving simultaneously enhanced activity and selectivity of electrocatalytic NRR to ammonia. Such 2D COFs are synthesized based on metal-phthalocyanine (M = Fe, Co, Ni, Mn, Zn, and Cu) and pyrene units bonded by pyrazine linkages. Significantly, the 2D -COFs with Fe-N-C center exhibit higher ammonia yield rate (33.6 μg h mg) and Faradaic efficiency (FE, 31.9%) at -0.1 V vs reversible hydrogen electrode than those with other M-N-C centers, making them among the best NRR electrocatalysts (yield rate >30 μg h mg and FE > 30%). In situ X-ray absorption spectroscopy, Raman spectroelectrochemistry, and theoretical calculations unveil that Fe-N-C centers act as catalytic sites. They show a unique electronic structure with localized electronic states at Fermi level, allowing for stronger interaction with N and thus faster N activation and NRR kinetics than other M-N-C centers. Our work opens the possibility of developing metal-nitrogen-doped carbon-rich 2D COFs as superior NRR electrocatalyst and provides an atomic understanding of the NRR process on M-N-C based electrocatalysts for designing high-performance NRR catalysts.
在环境条件下的电化学氮还原反应(NRR)对于取代当前的哈伯-博施法以实现可持续氨生产具有吸引力。金属杂原子掺杂的富碳材料已成为最有前途的NRR电催化剂。然而,同时提高它们的NRR活性和选择性仍然是一个巨大的挑战,而精确调控活性位点的原理一直难以捉摸。在此,我们报道了首例结合M-N-C中心的结晶二维共轭共价有机框架(2D COF)作为新型、明确且有效的催化剂,实现了电催化NRR制氨的活性和选择性同时增强。这种2D COF是基于金属酞菁(M = Fe、Co、Ni、Mn、Zn和Cu)和通过吡嗪键连接的芘单元合成的。值得注意的是,与其他M-N-C中心相比,具有Fe-N-C中心的2D -COF在相对于可逆氢电极-0.1 V时表现出更高的氨产率(33.6 μgh mg)和法拉第效率(FE,31.9%),使其成为最佳的NRR电催化剂之一(产率>30 μgh mg且FE>30%)。原位X射线吸收光谱、拉曼光谱电化学和理论计算表明,Fe-N-C中心作为催化位点。它们具有独特的电子结构,在费米能级处有局域电子态,与N的相互作用更强,因此比其他M-N-C中心具有更快的N活化和NRR动力学。我们的工作开启了将金属氮掺杂的富碳2D COF开发为优异NRR电催化剂的可能性,并为基于M-N-C的电催化剂上的NRR过程提供了原子层面的理解,以设计高性能的NRR催化剂。