Timperanza Chiara, Jensen Holger, Hansson Ellinor, Bäck Tom, Lindegren Sture, Aneheim Emma
Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 45, Sweden.
Department of Clinical Physiology and Nuclear Medicine, Cyclotron and Radiochemistry unit, Rigshospitalet, Blegdamsvej 9, Copenhagen, 2100, Denmark.
EJNMMI Radiopharm Chem. 2024 May 22;9(1):43. doi: 10.1186/s41181-024-00273-z.
A significant challenge in cancer therapy lies in eradicating hidden disseminated tumor cells. Within Nuclear Medicine, Targeted Alpha Therapy is a promising approach for cancer treatment tackling disseminated cancer. As tumor size decreases, alpha-particles gain prominence due to their high Linear Energy Transfer (LET) and short path length. Among alpha-particle emitters, At stands out with its 7.2 hour half-life and 100% alpha emission decay. However, optimizing the pharmacokinetics of radiopharmaceuticals with short lived radionuclides such as At is pivotal, and in this regard, pretargeting is a valuable tool. This method involves priming the tumor with a modified monoclonal antibody capable of binding both the tumor antigen and the radiolabeled carrier, termed the "effector molecule. This smaller, faster-clearing molecule improves efficacy. Utilizing the Diels Alder click reaction between Tetrazine (Tz) and Trans-cyclooctene (TCO), the Tz-substituted effector molecule combines seamlessly with the TCO-modified antibody. This study aims to evaluate the in vivo biodistribution of two Poly-L-Lysine-based effector molecule sizes (10 and 21 kDa), labelled with At, and the in vitro binding of the most favorable polymer size, in order to optimize the pretargeted radioimmunotherapy with At.
In vivo results favor the smaller polymer's biodistribution pattern over the larger one, which accumulates in organs like the liver and spleen. This is especially evident when comparing the biodistribution of the smaller polymer to a directly labelled monoclonal antibody. The smaller variant also shows rapid and efficient binding to SKOV-3 cells preloaded with TCO-modified Trastuzumab in vitro, emphasizing its potential. Both polymer sizes showed equal or better in vivo stability of the astatine-carbon bond compared to a monoclonal antibody labelled with the same prosthetic group.
Overall, the small Poly-L-Lysine-based effector molecule (10 kDa) holds the most promise for future research, exhibiting significantly lower uptake in the kidneys and spleen compared to the larger effector (21 kDa) while maintaining an in vivo stability of the astatine-carbon bond comparable to or better than intact antibodies. A proof of concept in vitro cell study demonstrates rapid reaction between the small astatinated effector and a TCO-labelled antibody, indicating the potential of this novel Poly-L-Lysine-based pretargeting system for further investigation in an in vivo tumor model.
癌症治疗中的一个重大挑战在于根除隐藏的播散性肿瘤细胞。在核医学领域,靶向α治疗是一种有前景的癌症治疗方法,用于应对播散性癌症。随着肿瘤体积减小,α粒子因其高线性能量传递(LET)和短路径长度而变得突出。在α粒子发射体中,砹因其7.2小时的半衰期和100%的α发射衰变而脱颖而出。然而,优化含有诸如砹等短寿命放射性核素的放射性药物的药代动力学至关重要,在这方面,预靶向是一种有价值的工具。该方法包括用一种修饰的单克隆抗体对肿瘤进行预处理,该抗体能够结合肿瘤抗原和放射性标记的载体,即“效应分子”。这种更小、清除更快的分子可提高疗效。利用四嗪(Tz)和反式环辛烯(TCO)之间的狄尔斯-阿尔德点击反应,Tz取代的效应分子与TCO修饰的抗体无缝结合。本研究旨在评估两种基于聚-L-赖氨酸的效应分子大小(10 kDa和21 kDa)用砹标记后的体内生物分布,以及最有利聚合物大小的体外结合情况,以优化用砹进行的预靶向放射免疫治疗。
体内结果表明,较小聚合物的生物分布模式优于较大聚合物,较大聚合物会在肝脏和脾脏等器官中蓄积。将较小聚合物的生物分布与直接标记的单克隆抗体进行比较时,这一点尤为明显。较小变体在体外也显示出与预先加载了TCO修饰曲妥珠单抗的SKOV-3细胞快速且高效的结合,凸显了其潜力。与用相同辅基标记的单克隆抗体相比,两种聚合物大小的砹-碳键在体内均表现出相同或更好的稳定性。
总体而言,基于聚-L-赖氨酸的小效应分子(10 kDa)在未来研究中最具潜力,与较大效应分子(21 kDa)相比,其在肾脏和脾脏中的摄取显著更低,同时保持砹-碳键的体内稳定性与完整抗体相当或更好。一项体外细胞概念验证研究表明,小的砹化效应分子与TCO标记的抗体之间反应迅速,表明这种新型基于聚-L-赖氨酸的预靶向系统有潜力在体内肿瘤模型中进行进一步研究。